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Bayesian philosophy

Bayesian school of statistics differs from the Frequentist school.

Bayesians have a different perspective on data and models.

In particular, no ’true, underlying distribution of the data’.

Bayesians have a ’belief’ concerning the mechanisms generating the

data. The data itself is used to correct this belief.

Mathematically

The belief is represented by a prior measure on the model.

The data is incorporated by conditioning, resulting in a posterior mea-

sure on the model.
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Frequentist analysis

We shall analyse the Bayesian procedure from a frequentist perspec-

tive.

Assumption sample X1, . . . , Xn i.i.d. P0-distributed.

Choose a prior Π on the model P; calculate the posterior

We shall study the large-sample behaviour of the posterior, e.g.

1. Consistency,

2. Rate of convergence,

3. Limiting shape.

in the limit n→∞.
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Goal

Only freedom: choice of model and prior measure

The question

Given the model, which priors give rise

to posteriors with good

frequentist convergence properties?

The answer

To formulate theorems that assert

asymptotic properties of the posterior,

under conditions on the prior and the model.
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Course schedule

Lecture 1 Introduction

Setting the stage: bayesian and asymptotic statistics

Lecture 2 Posterior consistency

Doob’s and Schwartz’ consistency theorems, test-sequences

Lecture 3 Posterior rate of convergence

The Ghosh-Ghosal-van der Vaart-theorem

Lecture 4 Posterior limiting shape

The Bernstein-Von Mises theorem

Lecture 5 Research topics

Misspecification, semiparametric Bernstein-Von Mises
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Frequentist estimation

Choose Model {Pθ : θ ∈ Θ}

Assume Observation Y ∈ Y is random variable, and

Y ∼ Pθ0.

for some, unknown θ0 ∈ Θ.

Procedure point-estimator θ̂(Y )

Goal Choose Ŷ such that it is ’close to’ θ0 with high Pθ0-probability.
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Bayesian estimation: prior

Assume Observation Y and parameter θ̄ are random variables; joint

distribution Π on Y ×Θ.

(Y, θ̄) ∼ Π

Choose The model arises as

Pθ = ΠY |θ̄=θ

Choose The marginal for θ̄ (together with the conditionals {Pθ : θ ∈
Θ}) specify Π completely.

Marginal Πθ on Θ is called the prior. Model is probablity space

(Θ,G ,Πθ)
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Bayesian estimation: posterior

The other conditional distribution

Πθ|Y

is called the posterior. Model becomes new probability space

(Θ,G ,Πθ|Y )

Bayes’ Rule Posterior in terms of Pθ and Πθ

Πθ|Y (G|B) =
ΠY |θ(B|G)Πθ(G)

ΠY (B)
=

ΠY |θ(B|G)Πθ(G)

ΠY |θ(B|Θ)Πθ(Θ)
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Bayesian estimation: posterior density

Bayes’ Rule for densities

dΠθ|Y (θ|Y ) =
πY |θ(Y |θ) dΠθ(θ)∫
Θ
πY |θ(Y |θ) dΠθ(θ)

If Y = (X1, . . . , Xn) exchangeable then

dΠθ|X(θ|X1, . . . , Xn) =

n∏
i=1

pθ(Xi) dΠ(θ)

∫
Θ

n∏
i=1

pθ(Xi) dΠ(θ)
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’True’ distribution?

Nowhere Y ∼ Pθ0 for some θ0 ∈ Θ.

Closest to this role: marginal of X1, . . . , Xn.

dΠX(x1, . . . , xn) =
∫
Θ

n∏
i=1

pθ(xi) dΠ(θ).

called prior predictive distribution. De Finetti’s theorem

Hence, True Bayesians don’t accept the frequentist notion of an ’un-

derlying, true distribution of the data’.

To the pure Bayesian, this fact invalidates almost all questions con-

cerning asymptotic behaviour of the posterior!

See, however, Blackwell and Dubins (1962), concerning the merging of posterior

predictive distributions.
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Hybrid perspective (I)

The Bayesian procedure can be considered from a frequentist per-

spective.

Choose Model with a prior Π

(Θ,G ,Π)

Assume observation Y ∈ Y is distributed

Y ∼ Pθ0.

for some, unknown θ0 ∈ Θ.
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Hybrid perspective (II)

Procedure Define the posterior

dΠθ|X(θ|X1, . . . , Xn) =

n∏
i=1

pθ(Xi) dΠ(θ)

∫
Θ

n∏
i=1

pθ(Xi) dΠ(θ)

Study the random posterior measure on Θ under the assumption:

(X1, . . . , Xn) ∼ Pnθ0.

Alternative explanation: we develop the point of view that the like-

lihood is an (unnormalized) density with respect to a measure (the

prior).
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Bayesian point estimators

The posterior mean

θ̂n(X) =
∫
Θ
θ dΠ(θ|X1, . . . , Xn).

If posterior dominated by µ on Θ, the posterior mode (or MAP-

estimator)

θ̂n(X) = argmax
θ∈Θ

π(θ|X1, . . . , Xn)

If the model is metric space, B(θ, ε) = {θ′ : d(θ′, θ) < ε},

θ̂n(X) = argmax
θ∈Θ

Π(B(θ, ε)|X1, . . . , Xn)

Use of a loss-function ` leads to minimization of
∫
`(θ, θ′) dΠ(θ′|X),

formal Bayes estimators (Le Cam (1986))
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Frequentist consistency

Let X1, . . . , Xn be i.i.d. Pθ0-distributed

Consider a point-estimator θ̂n(X).

An estimator is said to be consistent if

‖θ̂n − θ0‖
Pθ0−→0.

So for a consistent estimator, the Pnθ0
-probability of finding θ̂n at any

distance ε > 0 (or more) from θ0 becomes arbitrarily small, if we make

the sample large enough.

Since θ0 is unknown, we have to prove this for all θ ∈ Θ before it is

useful.
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Frequentist rate of convergence

Next, suppose that θ̂n
Pθ0−→ θ0. Let (rn) be a sequence rn ↓ 0.

We say that θ̂n converges to θ0 at rate rn if

r−1
n ‖θ̂n − θ0‖ = OPθ0

(1)

So rn compensates the decrease in distance between θ̂n and θ0, such

that the fraction is bounded in probability.

Or: the rn are the radii of balls around θ̂n that shrink (just) slowly

enough to still capture θ0 with high probability.
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Frequentist limit distribution

Finally, suppose that θ̂n converges to θ0 at rate rn. According to

Prohorov’s lemma: weakly convergent subsequence!

Let Lθ0 be a non-degenerate but tight distribution. If

r−1
n (θ̂n − θ0)

Pθ0 Lθ0,

we say that θ̂n converges to θ0 at rate rn with limit-distribution Lθ0.

So if we blow up the difference between θ̂n and θ0 by exactly the

right factors r−1
n , we keep up with convergence and arrive at a stable

distribution Lθ0.
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Typical example

Suppose that T is such that PθT (X) = θ, for all θ ∈ Θ.

Law of large numbers

θ̂n(X) = PnT
Pθ0−a.s.−→ Pθ0T = θ0.

So θ̂n is consistent for estimation of θ0.

Assume Pθ0T (X)2 <∞, the central limit theorem

GnT =
√
n(Pn − Pθ0)T

Pθ0 N(0,Varθ0T )

θ̂n converges to θ0 at rate n−1/2, with limit distribution N(0,Varθ0T ).

Questions of asymptotic optimality concern (identifiability), minimax

rates-of-convergence and minimal-variance limit distributions.
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Bayesian asymptotics

What signifies consistency for the posterior?

What prior measures give rise to consistent posteriors?

Can we determine rates for the posterior convergence?

How does this rate relate to minimax-rates? What does it mean

for the prior?

Is there something like a posterior limitshape?

What is it centered on? What is the shape? What conditions for

model and prior?

We shall answer the first two questions in great generality (for non-

parametric models). The third question is harder. We answer it for

smooth parametric models.
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Simulation
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Setting the stage

Non-parametric model

Discard with the parametrization θ 7→ Pθ. The model P contains probability

measures P and P is a probability space with prior Π.

Domination

For notational convenience , we assume that all P ∈ P are dominated by a

σ-finite measure µ: p = dP/dµ.

Metric

Furthermore, we assume that P is a metric space (metric d). The correspond-

ing Borel σ-algebra is in the domain of Π.

Asymptotics

The sample is X1, . . . , Xn, i.i.d.-P0 distributed, for some P0 ∈ P. We study the

large-sample limit n→∞.
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Formulations of consistency

Model P with topology T and prior Π on the Borel σ-algebra BT .

Posterior is consistent if for every open neighbourhood U ∈ T of P0

Πn(U |X1, X2, . . . , Xn )
P0−a.s.−→ 1. (1)

For a metric model P this is equivalent to (for every ε > 0)

Πn( d(P, P0) ≥ ε |X1, X2, . . . , Xn )
P0−a.s.−→ 0, (2)

and equivalent to

Πn( · |X1, X2, . . . , Xn ) δP0
, (P0 − a.s.). (3)
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Proof of equivalence (I)

Assume (1) holds. Let Uk denote a decreasing sequence of open balls

around P0. Define for every k ≥ 1 the set Ωk such that P∞0 (Ωk) = 1

and the limit in (1) with U = Uk holds on Ωk. Note that Ω′ = ∩k≥1Ωk

satisfies P∞0 (Ω′) = 1 and for all ω ∈ Ω′ and all k ≥ 1:

Πn
(
Uk

∣∣∣ X1(ω), X2(ω), . . . , Xn(ω)
)
→1, (n→∞).

Fix ω ∈ Ω′, let the open neighbourhood U of P0 be given. Then U

contains Ul for certain l ≥ 1 and hence:

Πn
(
U

∣∣∣ X1(ω), X2(ω), . . . , Xn(ω)
)
≥ Πn

(
Ul

∣∣∣ X1(ω), X2(ω), . . . , Xn(ω)
)

as n → ∞. So (1) does not only hold P0-almost-surely for each U

separately, but P0-almost-surely for all U simultaneously.
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Proof of equivalence (II)

Let f : P → R be bounded (|f | ≤ M) and continuous. Let η > 0 be

given. Neighbourhood U of P0 such that |f(P ) − f(P0)| ≤ η for all

P ∈ U . Integrate f with respect to the posterior and to δP0
:∣∣∣∣∫

P
f(P ) dΠn(P |X1, . . . , Xn)− f(P0)

∣∣∣∣
≤

∫
P\U

|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

+
∫
U
|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

≤ 2M Πn(P \ U |X1, X2, . . . , Xn )

+ sup
P∈U

|f(P )− f(P0)|Πn(U |X1, X2, . . . , Xn )

≤ η+ o(1), (n→∞).

Portmanteau: Πn( · |X1, X2, . . . , Xn ) δP0
, P0-almost-surely.
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Proof of equivalence (III)

Conversely, assume Πn( · |X1, X2, . . . , Xn ) δP0
, P0-a.s. Let U be an

open neighbourhood of P0. Based on the metric, we can construct a

continuous f : P → [0,1] that separates {P0} from P \ U , i.e. f = 1

at {P0} and f = 0 on P \ U .

lim inf
n→∞ Πn(U |X1, X2, . . . , Xn ) = lim inf

n→∞

∫
P

1U(P ) dΠn(P |X1, . . . , Xn)

≥ lim inf
n→∞

∫
P
f(P ) dΠn(P |X1, . . . , Xn) =

∫
P
f(P ) dδP0

(P )= 1,

P0-almost-surely.
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Bayesian point-estimators

Point-estimators derived from a consistent Bayesian procedure are

consistent themselves under some mild conditions.

Theorem 28.1. Suppose that the metric d is the total variation norm

‖ . ‖. Assume that the posterior is consistent. Then the posterior

mean P̂n is a P0-almost-surely consistent point-estimator (with re-

spect to total-variation).
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Proof of point-estimator’s consistency

Extend P 7→ ‖P −P0‖ to the convex hull of P. Since P 7→ ‖P −P0‖ is

convex by the triangle inequality, we apply Jensen

‖P̂n − P0‖ =
∥∥∥∥∫

P
P dΠn(P |X1, . . . , Xn )− P0

∥∥∥∥
≤

∫
P
‖P − P0‖ dΠn(P |X1, . . . , Xn ).

Since P
Πn P0 under Πn = Πn( · |X1, . . . , Xn ) and P 7→ ‖P − P0‖ is

bounded and continuous, the r.h.s. converges to the expectation of

‖P − P0‖ under the limit law δP0
, which equals zero. Hence

P̂n→P0, (P0 − a.s.).

in total variation.
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Remarks on Bayesian point-estimators

The above argument works for any convex metric d.

Similar arguments demonstrate consistency for other classes of

point estimators derived from a consistent sequence of posterior

distributions, e.g. Le Cam’s formal Bayes estimators.

The notion of a point-estimator is not an entirely natural extension

to the Bayesian framework: for example, if the model is non-

convex, the expectation based on the posterior measure may lie

outside the model. Similarly, perfectly well-defined posteriors may

lead to ill-defined point-estimators due to integrability issues or

non-existence of maximisers, which become more severe as the

model becomes more complicated.
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Doob’s consistency theorem

Theorem 31.1. (Doob (1948)) Suppose that both the model Θ and

the sample space X are Polish spaces endowed with their respective

Borel-σ-algebras. Assume that the map θ 7→ Pθ is one-to-one. Then

the sequence of posteriors is consistent Π-almost-surely.

Proof. Proof The proof of this theorem is an application of Doob’s

martingale convergence theorem (see e.g. Van der Vaart (1998) or

Ghosh and Ramamoorthi (2003)).

A Polish space is a complete, separable, metric space. Often needed

to guarantee measurability.

The only real condition here is identifiability of θ.
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Is Doob’s theorem enough?

For many Bayesians, Doob’s theorem is more than enough: paramet-

ric model Θ with a prior Π that dominates Lebesgue measure on Θ:

inconsistency only on subsets of Lebesgue measure zero.

“the data overrides prior beliefs asymptotically”.

But!

parametric objection: misspecification

Consistency only if the true distribution was not excluded from

consideration in the first place by an ill-chosen prior or model. If

the models does not contain the true distribution, inconsistency

is guaranteed.
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Freedman’s point

non-parametric objection: sparsity of prior mass

Doob’s theorem says nothing about specific points: it is always

possible that P0 belongs to the null-set for which inconsistency

occurs.

Non-parametric counterexamples

Freedman (1963,1965), Diaconis and Freedman (1986), Cox (1993),

Diaconis and Freedman (1998). Basically what is shown is that

Doob’s null-set of inconsistency can be rather large.

Some authors are tempted to present the above as definitive proof of

the fact that Bayesian statistics is useless in non-parametric estima-

tion problems. More precise would be the statement that not every

choice of prior is suitable and some may lead to unforeseen instances

of inconsistency.
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Schwartz’ consistency theorem

Theorem 34.1. (Schwartz (1965)) Assume that

(i) For every η > 0,

Π
(
P ∈ P : −P0 log

p

p0
≤ η

)
> 0, (4)

(ii) For every ε > 0, there exists a sequence (φn) of test-functions

such that:

Pn0φn → 0, sup
{P :d(P,P0)>ε}

Pn(1− φn) → 0. (5)

Then

Πn
(
d(P, P0) ≥ ε |X1, X2, . . . , Xn

) P0−a.s.−→ 0, (6)

for all ε > 0.
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The conditions in Schwartz’ theorem

Schwartz’ first condition says that all Kullback-Leibler neighbour-

hoods of P0 should receive sufficient prior mass. But P0 is unknown,

so to guarantee this, we have to prove the first condition for all KL-

neighbourhoods of all P ∈ P. In a sense, this requires uniformity of

the prior.

The second condition requires uniform testability of {P0} versus the

complements of d-balls around P0. One can view this in various ways.

For instance, identifiability of the model in a statistical sense. Another

explanation: the sequence (φn) separates {P0} from the complements

of d-balls around P0, in an asymptotic way.

Technically, the reasons become clear on the next few slides.

Analogous conditions will arise in the rate-of-convergence theorem.
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Proof of Schwartz (I)

Let ε, η > 0 be given. Define

V = {P ∈ P : d(P, P0) ≥ ε }.

Split the n-th posterior (of V ) with the test functions φn and take

the lim sup:

lim sup
n→∞

Πn(V |X1, . . . , Xn) ≤ lim sup
n→∞

Πn(V |X1, . . . , Xn)(1− φn)

+ lim sup
n→∞

Πn(V |X1, . . . , Xn)φn.
(7)

Define Kη = {P ∈ P : −P0 log(p/p0) ≤ η}. For every P ∈ Kη, LLN∣∣∣∣ Pn log
p

p0
− P0 log

p

p0

∣∣∣∣ → 0, (P0 − a.s.).
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Proof of Schwartz (II)

So for every α > η and all P ∈ Kη,
n∏
i=1

p

p0
(Xi) ≥ e−nα,

Pn0 -almost-surely. Use this to lower-bound the denominator

lim inf
n→∞ enα

∫
P

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ lim inf

n→∞ enα
∫
Kη

n∏
i=1

p

p0
(Xi) dΠ(P )

≥
∫
Kη

lim inf
n→∞ enα

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ Π(Kη) > 0.
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Proof of Schwartz (III)

The first term in (7) can be bounded as follows

lim sup
n→∞

Πn(V |X1, . . . , Xn)(1− φn)(X1, . . . , Xn)

≤
lim sup
n→∞

enα
∫
V

n∏
i=1

(p/p0)(Xi) (1− φn)(X1, . . . , Xn) dΠ(P )

lim inf
n→∞ enα

∫
P

n∏
i=1

(p/p0)(Xi) dΠ(P )

≤
1

Π(Kη)
lim sup
n→∞

fn(X1, . . . , Xn),

(8)

where we use the (non-negative)

fn(X1, . . . , Xn) = enα
∫
V

n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn) dΠ(P ).
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Exponential testing power

At this stage in the proof we need the following lemma, which says

that uniform consistency of testing can be assumed to be of expo-

nential power without loss of generality.

Lemma 39.1. Suppose that for given ε > 0 there exists a sequence

of tests (φn)n≥1 such that:

Pn0φn → 0, sup
P∈Vε

Pn(1− φn) → 0,

where Vε = {P ∈ P : d(P, P0) ≥ ε}. Then there exists a sequence of

tests (ωn)n≥1 and positive constants C,D such that:

Pn0ωn ≤ e−nC, sup
P∈Vε

Pn(1− ωn) ≤ e−nD (9)
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Proof of Schwartz (IV)

Lemma 39.1) guarantees that there exists a constant β > 0 such that

for large enough n,

P∞0 fn = Pn0 fn = enα
∫
V
Pn0

( n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn)

)
dΠ(P )

≤ enα
∫
V
Pn(1− φn) dΠ(P ) ≤ e−n(β−α).

(10)

Choose η < β and α such that η < α < 1
2(β + η). Markov’s inequality

P∞0
(
fn > e−

n
2(β−η)) ≤ e

n
2(β−η) P∞0 fn ≤ en(α−

1
2(β+η)).
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Proof of Schwartz (V)

Hence
∑∞
n=1 P

∞
0 (fn > exp−n2(β − η)) converges. By the first Borel-

Cantelli lemma

0 = P∞0

( ∞⋂
N=1

⋃
n≥N

{
fn > e−

n
2(β−η)})

≥ P∞0

(
lim sup
n→∞

(
fn− e−

n
2(β−η)) > 0

)
So fn → 0, (P0 − a.s.) and hence

Πn(V |X1, . . . , Xn) (1− φn)(X1, . . . , Xn)
P0−a.s.−→ 0.

The other term in (7) is treated similarly: Pn0Π(V |X1, . . . , Xn)φn ≤
Pn0φn ≤ e−nC (lemma 39.1); use Markov’s inequality and the first

Borel-Cantelli lemma again to show that:

Π(V |X1, . . . , Xn)φn(X1, . . . , Xn)
P0−a.s.−→ 0. (11)

Combination of (8) and (11) proves that (7) equals zero.
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Setting the stage

Non-parametric model

Again, let P be a model with metric d, prior Π, where it is assumed

that the σ-algebra on the model contains the Borel σ-algebra.

Frequentist sample

Assume that X1, X2, . . . is an infinite i.i.d. sample from an unknown

distribution P0 ∈ P.

KL-neighbourhoods

We shall need a particular variant of the Kullback-Leibler neigh-

bourhood used in Schwartz’ theorem (theorem 34.1): for every

ε > 0

B(ε) =
{
P ∈ P : −P0 log

p

p0
≤ ε2, P0

(
log

p

p0

)2
≤ ε2

}
. (12)
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Definition of posterior rate

Conceptually

Define the posterior rate of convergence as the fastest rate (εn)

at which we can let balls Dd(P0, εn) = {P ∈ P : d(P, P0) < Mεn}
shrink to radius zero, while still capturing posterior mass (arbi-

trarily close to) one in the limit n→∞.

Mathematically

Let (εn) be such that εn > 0, εn ↓ 0. We say that the posterior

Π( · |X1, X2, . . . , Xn) converges to P0 at rate εn, if for some M > 0:

Πn
(
d(P, P0) ≥Mεn

∣∣∣ X1, X2, . . . , Xn
) P0−→0, (13)
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Rates for Bayesian point-estimators

Point-estimators derived from a posterior that converges at rate εn

converge at rate εn themselves under some mild conditions.

Assume that posterior satisfies (13) with rate (εn) and constant M >

0. Define point estimators P̃n(X) as (near-)maximisers of

P 7→ Πn
(
Dd

(
P,Mεn

) ∣∣∣ X1, . . . , Xn
)
,

Lemma 45.1. For some M > 0, the estimator sequence P̃n satisfies

Pn0

(
ε−1
n d(P̃n, P0) ≤ 2M

)
→ 1 (14)

As a result, εn is an upper bound for the rate at which P̃n converges

to P0 with respect to d, i.e. ε−1
n d(P̃n, P0) = OP0

(1).

45



Proof of rate for point-estimators

By definition of a near-maximiser:

Πn(B(P̃n,Mεn) |X1, . . . , Xn )

≥ sup
P∈P

Π(B(P,Mεn) |X1, . . . , Xn )− oP0
(1)

≥ Π(B(P0,Mεn) |X1, . . . , Xn )− oP0
(1).

First term on the r.h.s. converges to one by assumption, so the l.h.s.

converges to one in P0-probability. If d(P̃n, P0) > 2Mεn

B(P̃n,Mεn) ∩B(P0,Mεn) = Ø

The total posterior mass does not exceed one, so d(P̃n, P0) ≤ 2Mεn

with P0-probability growing to one.
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Optimal rates

The possibility to construct point-estimators from posteriors converg-

ing at the same rate, implies that limitations on the rate of conver-

gence derived for point estimators, apply also to Bayesian rates.

This argument applies to other asymptotic optimality criteria as well.

In particular, minimax rates are optimal in many problems, e.g. in

density estimation.

Hellinger metric

H(P,Q) =
(∫ (

p1/2 − q1/2
)2
dµ

)1/2
.
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Ghosal-Ghosh-van der Vaart theorem

Theorem 48.1. (Ghosal-Ghosh-van der Vaart (2000))

Suppose that for (εn) such that εn > 0, εn ↓ 0 and nε2n → ∞, two

conditions hold:

(i) There exists a constant C > 0 such that:

Π
(
B(εn)

)
≥ e−nCε

2
n. (15)

(ii) There exists a sequence φn of test-functions φn and a constant

L > 0 such that:

Pn0φn → 0, sup
P :d(P,P0)≥εn

Pn(1− φn) ≤ e−nLε
2
n. (16)

Then for a sufficiently large M > 0,

Pn0Πn( d(P, P0) ≥Mεn |X1, . . . , Xn ) → 0. (17)
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Proof of GGV theorem (I)

Let η > 0; define A(η) = {P ∈ P : d(P, P0) ≥ η}. The expectation

in (17) is decomposed using the tests φn; for every n ≥ 1 and every

M > 1, we have:

Pn0Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)

= Pn0 Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
φn(X)

+ Pn0 Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
(1− φn)(X).

We estimate the terms on the right-hand side separately. Due to the

first inequality in (16):

Pn0 Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
φn(X) ≤ Pn0 φn(X) → 0,

the first term converges to zero.
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Proof of GGV theorem (II)

To estimate the second term, we use the definition of the posterior

to obtain:

Pn0Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
(1− φn)(X)

= Pn0

[ ∫
A(Mεn)

n∏
i=1

p

p0
(Xi) (1− φn) dΠ(P )

/ ∫
P

n∏
i=1

p

p0
(Xi) dΠ(P )

]
(18)

First we concentrate on the denominator, using assumption (15).
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Proof of GGV theorem (III)

Lemma 51.1. Let ε > 0 be given. If Π(B(ε)) > 0, then for every

K > 0:

Pn0

( ∫
B(ε)

n∏
i=1

p

p0
(Xi) dΠ(P ) ≤ e−nε

2(1+K)Π(B(ε))
)
≤

1

nK2ε2
. (19)

Proof. Proof The proof of this lemma can be found as lemma 8.1 in

Ghosal-Ghosh-van der Vaart (2000).

Recall

B(ε) =
{
P ∈ P : −P0 log

p

p0
≤ ε2, P0

(
log

p

p0

)2
≤ ε2

}
.
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Proof of GGV theorem (III)

Let Ωn be the subset of X n for which the inequality between left-

and right-hand sides in the following display holds:∫
P

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥

∫
B(εn)

n∏
i=1

p

p0
(Xi) dΠ(P )≥ e−(1+K)nε2nΠ(B(εn)),

(20)

(with K > 0 as yet unspecified). Decompose the Pn0 -expectation in

(18) into separate integrals over Ωn and X n \Ωn

Pn0Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
(1− φn)

≤ Pn0Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
(1− φn)1Ωn + Pn0 (X n \Ωn).

Now Pn0 (X n \Ωn) = o(1) as n→∞ according to (19).
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Proof of GGV theorem (IV)

The first term is estimated as follows:

Pn0Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
(1− φn)(X) 1Ωn

≤
e(1+K)nε2n

Π(B(εn))
Pn0

(∫
A(Mεn)

n∏
i=1

p

p0
(Xi) (1− φn)(X) dΠ(P )

)

≤
e(1+K)nε2n

Π(B(εn))

∫
A(Mεn)

Pn(1− φn)(X) dΠ(P )

≤ e(1+K)nε2n
Π(A(Mεn))

Π(B(εn))
sup

P∈A(Mεn)
Pn(1− φn),

(21)

where we have substituted (20) and used the positivity of the in-

tegrand, applied Fubini’s theorem and bounded the integrand by its

supremum over A(Mεn).
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Proof of GGV theorem (V)

Application of the second inequality in (16) gives:

Pn0Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
(1− φn) ≤ e(1+K+C−M2L)nε2n + o(1).

Hence, for all K > 0 there exists a constant M > 0 such that the

above expression converges to zero. This leads us to conclude that:

Pn0 Πn
(
A(Mεn)

∣∣∣ X1, . . . , Xn
)
→ 0, (n→∞).

for sufficiently large M > 0.
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Testing and metric entropy and minimax rates

Condition existence of test-sequences (φn) such that

Pn0φn → 0, sup
P :d(P,P0)≥εn

Pn(1− φn) ≤ e−nε
2
n.

If d = H, sufficient condition on packing numbers

D(εn,P, H) ≤ enε
2
n. (22)

(See Ghosal, Ghosh, van der Vaart (2000), Birgé (1983,1984) and

Le Cam (1986)

The minimal εn satisfying logD(εn,P, H) ≤ nε2n is (roughly) the fastest

Hellinger-rate obtainable by any method of point-estimation. the so-

called minimax-rate, Birgé (1983).
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Covering and packing numbers

The packing number D(η,X , ρ) of a metric space (X , ρ) is defined as

the maximal number of points in X such that the ρ-distance between

all pairs is at least η.

This number is related to the so-called covering number N(η,X , ρ)

which is defined as the minimal number of ρ-balls of radius η needed

to cover X .

For many models entropy numbers are well-known or can be calcu-

lated (Kolmogorov, Tikhomirov (1961), van der Vaart and Wellner

(1996)).

Lemma 56.1. For any metric space (X , ρ) and all ε > 0

N(ε,X , ρ) ≤ D(ε,X , ρ) ≤ N(ε/2,X , ρ)
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Proof of metric entropy inequalities

Let ε > 0 be given. By definition of D(ε,X , ρ) = D, there exists a

maximal ε-separated set {x1, . . . , xD} ⊂ X , This means that for all

x ∈ X ,

min{d(x, xi) : 1 ≤ i ≤ D} < ε.

So there exists an i such that d(x, xi) < ε, that is, x ∈ Dρ(xi, ε). Hence,

{Dρ(xi, ε) : 1 ≤ i ≤ D},

forms a cover of X . Since N(ε,X , ρ) is the minimal number of balls

Dρ( · , ε) needed to cover X ,

N(ε,X , ρ) ≤ D(ε,X , ρ)

The other inequality follows from similar arguments.
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Metric entropy for compact Θ ⊂ X

Lemma 58.1. For any compact K subset of a metric space (X , d),

for all ε > 0

logN(ε,X , d) <∞ (23)

Proof. Proof Let ε > 0 be given. Cover K by the collection of open

d-balls

{Dd(x, ε) : x ∈ K}.

Since K is compact, any open cover has a finite subcover, i.e. there

exists a finite set of points {x1, . . . , xN} ⊂ K such that {Dd(xi, ε) :

1 ≤ i ≤ N} covers K. Since N(ε,K, ρ) is the minimal number of balls

needed to cover K, logN(ε,K, ρ) ≤ logN <∞.

This is important for the existence of consistency tests: a test-

sequence (φn) as needed in Schwartz’ theorem if (23) holds.
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Metric entropy for compact Θ ⊂ Rd (I)

Lemma 59.1. For any compact Θ subset of Rd, there exists a con-

stant M > 0 such that for small enough ε > 0

N(ε,Θ, ‖ · ‖) <
(
M

ε

)d

Proof Θ is compact, so Θ is bounded, i.e. there exists a constant

M ′ > 0 such that Θ ⊂ B(0,M ′). Hence,

N(ε,Θ, ‖ · ‖) ≤ N(ε, B(0,M ′), ‖ · ‖).

Let ε > 0 be given. Due to lemma 56.1, we see

N(ε, B(0,M ′), ‖ · ‖) ≤ D(ε, B(0,M ′), ‖ · ‖) = D

Let θ1, . . . , θD} be maximal ε-separated in Θ. This implies that:

i 6= j ⇒ B(θi,
1
2ε) ∩B(θj,

1
2ε) = Ø.
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Metric entropy for compact Θ ⊂ Rd (II)

Moreover, ⋃
1≤i≤D

B(θi,
1
2ε) ⊂ B(0,M ′ + 1

2ε)

We compare the Lebesgue-measures

µ

( ⋃
1≤i≤D

B(θi,
1
2ε)

)
≤ µ

(
B(0,M ′ + 1

2ε)
)

Denoting the Lebesgue-measure of a d-dimensional ball of radius r by

Vd r
d, we arrive at:

µ

( ⋃
1≤i≤D

B(θi,
1
2ε)

)
=

D∑
i=1

Vd
(
1
2ε

)d
= DVd

(
1
2ε

)d
≤ Vd

(
M ′ + 1

2ε
)d
.

Hence,

D(ε, B(0,M ′), ‖ · ‖) ≤
(
2M ′ + ε

ε

)d
≤

(
3M ′

ε

)d
,

for small enough ε.
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Constructing tests (I)

Define minimax risk π(P,Q) for testing P against convex Q

π(P,Q) = inf
φ

sup
Q∈Q

(Pφ+Q(1− φ))

Under (convexity, continuity, compactness) conditions, we can apply

the minimax theorem (Strasser (1985), following Le Cam (>195?))

inf
φ

sup
Q∈Q

(Pφ+Q(1− φ)) = sup
Q∈Q

inf
φ

(Pφ+Q(1− φ))

On the r.h.s. φ can be chosen Q-dependently; minimal for φ = 1{p < q}

π(P,Q) = sup
Q∈Q

(P (p < q) +Q(p ≥ q))
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Constructing tests (II)

Note that:

P (p < q) +Q(p ≥ q) =
∫
p<q

p dµ+
∫
p≥q

q dµ

≤
∫
p<q

p1/2q1/2 dµ+
∫
p≥q

p1/2q1/2 dµ

= 1− 1
2H

2(P,Q)≤ e−
1
2H

2(P,Q).

This relates minimax testing power to the Hellinger distance between

P and Q. For product measures, n-th power.

π(Pn,Qn) ≤ sup
Q∈Q

e−
1
2nH

2(P,Q) = e−
1
2nH

2(P,Q).
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Constructing tests (III)

But this works only for convex Q. If we want to test against non-

convex alternatives (like complements of H-balls), we cover by (con-

vex) balls and combine the corresponding tests.

Lemma 63.1. Given two test-sequences (ω1,n) and (ω2,n), such that

(i = 1,2):

Pn0ωi,n → 0, sup
P∈Qi

Pn(1− ωi,n) → 0,

then there exists a test-sequence (ψn) such that:

Pn0ψn → 0, sup
P∈Q1∪Q2

Pn(1− ψn) → 0,

A slightly stronger version of this lemma preserves (exponential) testing power.
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Constructing tests (IV)

Proof. Proof Define ψn = ω1,n ∨ ω2,n. Then

Pn0ψn ≤ Pn0ω1,n + Pn0ω2,n→ 0.

and

sup
P∈Q1∪Q2

Pn(1− ψn) = sup
P∈Q1

Pn(1− ψn) ∨ sup
P∈Q2

Pn(1− ψn)

≤ sup
P∈Q1

Pn(1− ω1,n) ∨ sup
P∈Q2

Pn(1− ω2,n)→ 0.

From the proof, we see that we can combine N tests into one and con-

trol the power, if the (exponential) testing power is balanced against

the (exponential) growth of N .
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Asymptotic aspects of non-parametric Bayesian Statistics

Lecture 4 Posterior limitshape

Bas Kleijn, University of Amsterdam

14th Meeting of AiO’s in Stochastics, Hilversum, 8-10 May 2006
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Setting the stage

Parametric model

Θ open subset of Rd; P = {Pθ : θ ∈ Θ}. Dominated by µ: pθ = dPθ/dµ.

Sample

The sample X1, X2, . . . be distributed i.i.d.-P0. P0 = Pθ0
, for some θ0 ∈ Θ.

Continuous, positive prior

Prior Π with Lebesgue-density π, continuous on neighbourhood of θ0 and

π(θ0) > 0.

Localization

We ‘localize’ the model: centre on θ0 and rescale by
√
n, H =

√
n(θ− θ0) ∈ Rd.

The posterior for H is Πn(H ∈ B|X1, . . . , Xn) = Πn(
√
n( θ − θ0) ∈ B|X1, . . . , Xn).
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Differentiability conditions

A model P is differentiable in quadratic mean at θ0 with score ˙̀θ0 if∫ (
p
1/2
θ − p

1/2
θ0

− 1
2(θ − θ0) ˙̀θ0 p

1/2
θ0

)2
dµ = o

(
‖θ − θ0‖2

)
.

Then P0 ˙̀θ0 = 0, ˙̀θ0 ∈ L2(Pθ0) and Iθ0 = P0 ˙̀θ0
˙̀θ0 is the Fisher infor-

mation.

A model P is locally asymptotically normal (LAN) at θ0, if for every

random sequence hn = OP0
(1),

log
n∏
i=1

pθ0+hn/
√
n

pθ0
(Xi) = hTnGn ˙̀θ0 −

1
2h

T
nIθ0hn + oP0

(1) (24)

Lemma 67.1. The model P is differentiable in quadratic mean at θ0
iff P is LAN at θ0.
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The Bernstein-Von Mises theorem

Define

∆n,θ0(X) = I−1
θ0

Gn ˙̀θ0

Theorem 68.1. Let P be differentiable in quadratic mean at θ0 with

non-singular Fisher-information Iθ0. Assume that for every sequence

of balls (Kn)n≥1 ⊂ Rd with radii Mn →∞, we have:

Πn
(
H ∈ Kn

∣∣∣ X1, . . . , Xn
) P0−→1. (25)

Then the posterior converges to a sequence of normal distributions

in total variation:

sup
B

∣∣∣∣ Πn(
H ∈ B

∣∣∣ X1, . . . , Xn
)
−N

∆n,θ0
,I−1
θ0

(B)
∣∣∣∣ P0−→0. (26)
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Connection with the MLE

The ∆n,θ0 describe the local behaviour of the maximum-likelihood

estimator (up to oP0
(1)).

Lemma 69.1. Assume that P is differentiable in quadratic mean

at θ0 with non-singular Fisher information. Moreover, suppose that

there exists an L2(P0)-function m such that for all pairs θ1, θ2 in a

neighbourhood of θ0,

| log pθ1(X)− log pθ2(X)| ≤ m(X)‖θ1 − θ2‖.

Then any consistent estimator θ̂n such that

Pn log pθ̂n ≥ sup
θ

Pn log pθ − oP0
(n−1)

satisfies
√
n(θ̂n − θ0) = ∆n,θ0 + oP0

(1). (27)
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Posterior and MLE

As a result ∥∥∥∥N√n(θ̂n−θ0),I−1
θ0

−N
∆n,θ0

,I−1
θ0

∥∥∥∥ P0−→0

Since the total variation norm is invariant under shifts and rescalings,

the BvM-assertion can be rewritten:∥∥∥∥ Π
(
θ̄ ∈ B

∣∣∣ X1, . . . , Xn
)
−N

θ̂n,n−1 I−1
θ0

(B)
∥∥∥∥ P0−→0.

Usually, θ̂n is the MLE, but any best regular estimator satisfies (27)

and can be used in this role.

We see that

Bayesian point-estimators and MLE coincide up to oP0
(1).
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Simulation
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Posterior density for growing n on a normal location model
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Credible sets and confidence regions (I)

Bayesian

A credible set of level α is any subset Bα of the model such that:

Π( θ̄ ∈ Bα |X1, . . . , Xn ) ≥ 1− α. (28)

Frequentist

A confidence region of level α is a (random) subset Cα(X) of the

model such that:

Pn0 ( θ0 ∈ Cα(X) ) ≥ 1− α (29)
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Credible sets and confidence regions (II)

Let Θ ⊂ R. Assume that the BvM-assertion holds.

Let α > 0. Based on (a realization of) the posterior, pick a (sample-

dependent) credible interval Bα(X). Define B′α(X) =
√
n(Bα(X)−θ0).

For every δ > 0,

Pn0

(∣∣∣∣Πn(B′α(X) |X1, . . . , Xn )−N
∆n,I

−1
0

(B′α(X))
∣∣∣∣ > α

)
< δ,

for large enough n. Using (28)

Pn0

(
N

∆n,I
−1
0

(B′α(X)) ≤ 1− 2α
)
< δ,
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Credible sets and confidence regions (III)

If h 6∈ B′α(X) then N
h,I−1

0
(B′α(X)) < 1/2, so if α < 1/4,

Pn0 (∆
n,I−1

0
∈ B′α(X) ) > 1− δ.

Since
√
n(θ̂n − θ0) = ∆n + oP0

(1),

Pn0 ( θ0 ∈ Bα(X) ) > 1− 2δ.

for large enough n (refer to 29)). We conclude that

If the BvM-assertion holds, credible sets are confidence regions

asymptotically.

This is important, because it is relatively easy to compute (or rather,

simulate) posterior distributions. (Markov-chain Monte-Carlo)
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Semiparametric Bernstein-Von Mises theorem?
(I)

The posterior limitshape in non-parametric models cannot be ex-

pected to be Gaussian. It is simply too good to be true. (Freedman

(1998)).

But think of the following: we have a semiparametric model

Θ×H → P : (θ, η) 7→ Pθ,η

where θ is a finite-dimensional parameter of interest and η is an

infinite-dimensional nuisance parameter. We assume that the sample

X1, X2, . . . is i.i.d.Pθ0,η0-distributed, for some θ0 ∈ Θ and η0 ∈ H. We

are interested only in estimation of θ0,

Frequentist theory for differentiable semiparametric estimation problems is well-

known (see e.g. van der Vaart (1988)). (Cox-model, models in survival analysis,

mixture-models, errors-in-variables regression, etc).
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Semiparametric Bernstein-Von Mises theorem?
(II)

Think of the posterior for a parametric model:

dΠθ|X(θ|X1, . . . , Xn) =

n∏
i=1

pθ(Xi) dΠ(θ)

∫
Θ

n∏
i=1

pθ(Xi) dΠ(θ)

In semiparametric context

dΠθ|X(θ|X1, . . . , Xn) =

∫
H

n∏
i=1

pθ,η(Xi) dΠH(η) dΠΘ(θ)

∫
Θ

∫
H

n∏
i=1

pθ,η(Xi) dΠH(η) dΠΘ(θ)
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Semiparametric Bernstein-Von Mises theorem?
(III)

In the parametric Bernstein-Von Mises proof, we only use the LAN-

property:

log
n∏
i=1

pθ0+hn/
√
n

pθ0
(Xi) = hTnGn ˙̀θ0 −

1
2h

T
nIθ0hn + oP0

(1)

In the semiparametric case, we therefore want:

log
∫
H

n∏
i=1

pθ0+hn/
√
n,η

pθ0
(Xi) dΠH(η)

= log
∫
H

n∏
i=1

pθ0,η

pθ0
(Xi) dΠH(η) + hTnGn˜̀θ0,η0 −

1
2h

T
n Ĩθ0,η0hn + oP0

(1)

In addition,
√
n-testability for the parameter θ id needed. The original

BvM-proof stays intact; we need sufficient conditions for the above...

Work in progress
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