Korteweg-de Vries Institute for Mathematics

Photographer: Patel, Viresh

dr. V.S. (Viresh) Patel


  • Faculty of Science
    Korteweg-de Vries Instituut
  • Visiting address
    Science Park 107
    Science Park 107  
  • Postal address:
    Postbus  94248
    1090 GE  Amsterdam
  • V.S.Patel@uva.nl
    T: T: 0205255861

2017

  • Kang, R. J., Long, E., Patel, V., & Regts, G. (2017). On a Ramsey-type problem of Erdős and Pach. Bulletin of the London Mathematical Society, 49(6), 991-999. DOI: 10.1112/blms.12094 
  • Patel, V., & Regts, G. (2017). Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. Electronic Notes in Discrete Mathematics, 61, 971-977. DOI: 10.1016/j.endm.2017.07.061 
  • Lo, A., Patel, V. S., Skokan, J., & Talbot, J. (2017). Decomposing tournaments into paths. Electronic Notes in Discrete Mathematics, 61(August 2017), 813-818. DOI: 10.1016/j.endm.2017.07.040 
  • Patel, V. S., & Regts, G. (2017). Deterministic Polynomial-Time Approximation Algorithms for Partition Functions and Graph Polynomials. SIAM Journal on Computing, 46(6), 1893-1919. DOI: 10.1137/16M1101003 

2016

  • Gutin, G., & Patel, V. (2016). Parameterized Traveling Salesman Problem: Beating the Average. SIAM Journal on Discrete Mathematics, 30(1), 220-238. DOI: 10.1137/140980946  [details] 

2015

  • Kang, R. J., Pach, J., Patel, V., & Regts, G. (2015). A Precise Threshold for Quasi-Ramsey Numbers. SIAM Journal on Discrete Mathematics, 29(3), 1670-1682. DOI: 10.1137/14097313X  [details] 
  • Kang, R. J., Patel, V., & Regts, G. (2015). On a Ramsey-type problem of Erdős and Pach. Electronic Notes in Discrete Mathematics, 49, 821-827. DOI: 10.1016/j.endm.2015.06.049  [details] 
This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library  or the Pure staff  of your faculty / institute. Log in to Pure  to edit your publications. Log in to Personal Page Publication Selection tool  to manage the visibility of your publications on this list.
  • No ancillary activities

edit contact information edit tabs