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Preface

These lecture notes were written for the course ‘Bayesian Statistics’, taught at University

of Amsterdam in the spring of 2007. The course was aimed at first-year MSc.-students in

statistics, mathematics and related fields. The aim was for students to understand the basic

properties of Bayesian statistical methods; to be able to apply this knowledge to statistical

questions and to know the extent (and limitations) of conclusions based thereon. Considered

were the basic properties of the procedure, choice of the prior by objective and subjective

criteria, Bayesian inference, model selection and applications. In addition, non-parametric

Bayesian modelling and posterior asymptotic behaviour have received due attention and com-

putational methods were presented.

An attempt has been made to make these lecture notes as self-contained as possible.

Nevertheless the reader is expected to have been exposed to some statistics, preferably from

a mathematical perspective. It is not assumed that the reader is familiar with asymptotic

statistics; these lecture notes provide a general introduction to this topic. Where possible,

definitions, lemmas and theorems have been formulated such that they cover parametric and

nonparametric models alike. An index, references and an extensive bibliography are included.

Since Bayesian statistics is formulated in terms of probability theory, some background in

measure theory is prerequisite to understanding these notes in detail. However the reader is

not supposed to have all measure-theorical knowledge handy: appendix A provides an overview

of relevant measure-theoretic material. In the description and handling of nonparametric

statistical models, functional analysis and topology play a role. Of the latter two, however,

only the most basic notions are used and all necessary detail in this respect will be provided

during the course.

The author wishes to thank Aad van der Vaart for his contributions to this course and

these lecture notes, concerning primarily (but not exclusively) the chapter entitled ‘Numerical

methods in Bayesian statistics’. For corrections to the notes, the author thanks C. Muris, ...

Bas Kleijn, Amsterdam, January 2007
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Chapter 1

Introduction

The goal of inferential statistics is to understand, describe and estimate (aspects of) the ran-

domness of measured data. Quite naturally, this invites the assumption that the data repre-

sents a sample from an unknown but fixed probability distribution. Based on that assumption,

one may proceed to estimate this distribution directly, or to give estimates of certain char-

acteristic properties (like its mean, variance, etcetera). It is this straightforward assumption

that underlies frequentist statistics and markedly distinguishes it from the Bayesian approach.

1.1 Frequentist statistics

Any frequentist inferential procedure relies on three basic ingredients: the data, a model and

an estimation procedure. The data is a measurement or observation which we denote by Y ,

taking values in a corresponding samplespace.

Definition 1.1.1. The samplespace for an observation Y is a measurable space (Y ,B) (see

definition A.1.1) containing all values that Y can take upon measurement.

Measurements and data can take any form, ranging from categorical data (sometimes

referred to as nominal data where the samplespace is simply a (usually finite) set of points

or labels with no further mathematical structure), ordinal data (sometimes called ranked

data, where the samplespace is endowed with an total ordering), to interval data (where in

addition to having an ordering, the samplespace allows one to compare differences or distances

between points), to ratio data (where we have all the structure of the real line). Moreover Y

can collect the results of a number of measurements, so that it takes its values in the form of a

vector (think of an experiment involving repeated, stochastically independent measurements

of the same quantity, leading to a so-called independent and identically distributed (or i.i.d.)

sample). The data Y may even take its values in a space of functions or in other infinite-

dimensional spaces.

1



2 Introduction

The samplespace Y is assumed to be a measurable space to enable the consideration of

probability measures on Y , formalizing the uncertainty in measurement of Y . As was said in

the opening words of this chapter, frequentist statistics hinges on the assumption that there

exists a probability measure P0 : B → [0, 1] on the samplespace Y representing the “true

distribution of the data”:

Y ∼ P0 (1.1)

Hence from the frequentist perspective, inferential statistics revolves around the central ques-

tion: “What is P0?”, which may be considered in parts by questions like, “What is the mean

of P0?”, “What are the higher moments of P0?”, etcetera.

The second ingredient of a statistical procedure is a model, which contains all explanations

under consideration of the randomness in Y .

Definition 1.1.2. A statistical model P is a collection of probability measures P : B → [0, 1]

on the samplespace (Y ,B).

The model P contains the candidate distributions for Y that the statistician finds “rea-

sonable” explanations of the uncertainty he observes (or expects to observe) in Y . As such,

it constitutes a choice of the statistician analyzing the data rather than a given. Often, we

describe the model in terms of probability densities rather than distributions.

Definition 1.1.3. If there exists a σ-finite measure µ : B → [0,∞] such that for all P ∈P,

P � µ, we say that the model is dominated.

The Radon-Nikodym theorem (see theorem A.4.2) guarantees that we may represent a

dominated model P in terms of probability density functions p = dP/dµ : Y → R. Note

that the dominating measure may not be unique and hence, that the representation of P in

terms of densities depends on the particular choice of dominating measure µ. A common way

of representing a model is a description in terms of a parameterization.

Definition 1.1.4. A model P is parameterized with parameter space Θ, if there exists a

surjective map Θ→P : θ 7→ Pθ, called the parameterization of P.

Surjectivity of the parameterization is imposed so that for all P ∈P, there exists a θ ∈ Θ

such that Pθ = P : unless surjectivity is required the parameterization may describe P only

partially. Also of importance is the following property.

Definition 1.1.5. A parameterization of a statistical model P is said to be identifiable, if

the map Θ→P : θ 7→ Pθ is injective.

Injectivity of the parameterization means that for all θ1, θ2 ∈ Θ, θ1 6= θ2 implies that

Pθ1 6= Pθ2 . In other words, no two different parameter values θ1 and θ2 give rise to the same

distribution. Clearly, in order for θ ∈ Θ to serve as a useful representation for the candidate

distributions Pθ, identifiability is a first requirement. Other common conditions on the map
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θ 7→ Pθ are continuity (with respect to a suitable (often metric) topology on the model),

differentiability (which may involve technical subtleties in case Θ is infinite-dimensional) and

other smoothness conditions.

Remark 1.1.1. Although strictly speaking ambivalent, it is commonplace to refer to both P

and the parameterizing space Θ as “the model”. This practice is not unreasonable in view of

the fact that, in practice, almost all models are parameterized in an identifiable way, so that

there exists a bijective correspondence between Θ and P.

A customary assumption in frequentist statistics is that the model is well-specified.

Definition 1.1.6. A model P is said to be well-specified if it contains the true distribution

of the data P0, i.e.

P0 ∈P. (1.2)

If (1.2) does not hold, the model is said to be mis-specified.

Clearly if P is parameterized by Θ, (1.2) implies the existence of a point θ0 ∈ Θ such that

Pθ0 = P0; if, in addition, the model is identifiable, the parameter value θ0 is unique.

Notwithstanding the fact that there may be inherent restrictions on the possible distri-

butions for Y (like guaranteed positivity of the measurement outcome, or symmetries in the

problem), the model we use in a statistical procedure constitutes a choice rather than a given:

presented with a particular statistical problem, different statisticians may choose to use dif-

ferent models. The only condition is that (1.2) is satisfied, which is why we have to choose

the model in a “reasonable way” given the nature of Y . However, since P0 is unknown, (1.2)

has the status of an assumption on the unknown quantity of interest P0 and may, as such,

be hard to justify depending on the comprehensiveness of P. When choosing the model,

two considerations compete: on the one hand, small models are easy to handle mathemati-

cally and parameters are usually clearly interpretable, on the other hand, for large models,

assumption (1.2) is more realistic since they have a better chance of containing P0 (or at least

approximate it more closely). In this respect the most important distinction is made in terms

of the dimension of the model.

Definition 1.1.7. A model P is said to be parametric of dimension d, if there exists an

identifiable parameterization Θ → P : θ 7→ Pθ, where Θ ⊂ Rd with non-empty interior

Θ̊ 6= Ø.

The requirement regarding the interior of Θ in definition 1.1.7 ensures that the dimension

d really concerns Θ and not just the dimension of the space Rd of which Θ forms a subset.

Example 1.1.1. The normal model for a single, real measurement Y , is the collection of all

normal distributions on R, i.e.

P =
{
N(µ, σ2) : (µ, σ) ∈ Θ

}
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where the parameterizing space Θ equals R × (0,∞). The map (µ, σ) 7→ N(µ, σ2) is surjec-

tive and injective, i.e. the normal model is a two-dimensional, identifiable parametric model.

Moreover, the normal model is dominated by the Lebesgue measure on the samplespace R and

can hence be described in terms of Lebesgue-densities:

pµ,σ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

Definition 1.1.8. If an infinite-dimensional space Θ is needed to parameterize P, then P

is called a non-parametric model.

For instance, the model consisting of all probability measures on (Y ,B) (sometimes re-

ferred to as the full non-parametric model) is non-parametric unless the samplespace contains

a finite number of points. Note that if the full non-parametric model is used, (1.2) holds

trivially.

Example 1.1.2. Let Y be a finite set containing n ≥ 1 points y1, y2, . . . , yn and let B be

the power-set 2Y of Y . Any probability measure P : B → [0, 1] on (Y ,B) is absolutely

continuous with respect to the counting measure on Y (see example A.2.1). The density of P

with respect to the counting measure is a map p : Y → R such that p ≥ 0 and

n∑
i=1

p(yi) = 1.

As such, P can be identified with an element of the so-called simplex Sn in Rn, defined as

follows

Sn =
{
p = (p1, . . . , pn) ∈ Rn : pi ≥ 0,

n∑
i=1

pi = 1
}
.

This leads to an identifiable parameterization Sn → P : p 7→ P of the full non-parametric

model on (Y ,B), of dimension n − 1. Note that Sn has empty interior in Rn, but can be

brought in one-to-one correspondence with a compact set in Rn−1 with non-empty interior by

the embedding: {
(p1, . . . , pn−1) ∈ Rn−1 : pi ≥ 0,

n−1∑
i=1

pi ≤ 1
}
→ Sn :

(p1, . . . , pn−1) 7→
(
p1, . . . , pn−1, 1−

n−1∑
i=1

pi

)
.

The third ingredient of a frequentist inferential procedure is an estimation method. Clearly

not all statistical problems involve an explicit estimation step and of those that do, not all

estimate the distribution P0 directly. Nevertheless, one may regard the problem of point-

estimation in the model P as prototypical.

Definition 1.1.9. A point-estimator (or estimator) is a map P̂ : Y →P, representing our

“best guess” P̂ (Y ) ∈P for P0 based on the data Y (and other known quantities).
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Note that a point-estimator is a statistic, i.e. a quantity that depends only on the data

(and possibly on other known information): since a point-estimator must be calculable in

practice, it may depend only on information that is known to the statistician after he has

performed the measurement with outcome Y = y. Also note that a point-estimator is a

stochastic quantity: P̂ (Y ) depends on Y and is hence random with its own distribution on

P (as soon as a σ-algebra on P is established with respect to which P̂ is measurable). Upon

measurement of Y resulting in a realisation Y = y, the estimator P̂ (y) is a definite point in

P.

Remark 1.1.2. Obviously, many other quantities may be estimated as well and the defini-

tion of a point-estimator given above is too narrow in that sense. Firstly, if the model is

parameterized, one may define a point-estimator θ̂ : Y → Θ for θ0, from which we obtain

P̂ (Y ) = Pθ̂(Y ) as an estimator for P0. If the model is identifiable, estimation of θ0 in Θ is

equivalent to estimation of P0 in P. But if the dimension d of the model is greater than one,

we may choose to estimate only one component of θ (called the parameter of interest) and

disregard other components (called nuisance parameters). More generally, we may choose to

estimate certain properties of P0, for example its expectation, variance or quantiles, rather

than P0 itself. As an example, consider a model P consisting of distributions on R with finite

expectation and define the linear functional e : P → R by e(P ) = PX. Suppose that we

are interested in the expectation e0 = e(P0) of the true distribution. Obviously, based on an

estimator P̂ (Y ) for P0 we may define an estimator

ê(Y ) =

∫
Y
y d[P̂ (Y )](y) (1.3)

to estimate e0. But in many cases, direct estimation of the property of interest of P0 can be

done more efficiently than through P̂ .

For instance, assume that X is integrable under P0 and Y = (X1, . . . , Xn) collects the

results of an i.i.d. experiment with Xi ∼ P0 marginally (for all 1 ≤ i ≤ n), then the empirical

expectation of X, defined simply as the sample-average of X,

PnX =
1

n

n∑
i=1

Xi,

provides an estimator for e0. (Note that the sample-average is also of the form (1.3) if we

choose as our point-estimator for P0 the empirical distribution P̂ (Y ) = Pn and Pn ∈ P.)

The law of large numbers guarantees that PnX converges to e0 almost-surely as n→∞, and

the central limit theorem asserts that this convergence proceeds at rate n−1/2 (and that the

limit distribution is zero-mean normal with P0(X − P0X)2 as its variance) if the variance of

X under P0 is finite. (More on the behaviour of estimators in the limit of large sample-size

n can be found in chapter 4.) Many parameterizations θ 7→ Pθ are such that parameters

coincide with expectations: for instance in the normal model, the parameter µ coincides with
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the expectation, so that we may estimate

µ̂(Y ) =
1

n

n∑
i=1

Xi,

Often, other properties of P0 can also be related to expectations: for example, if X ∈ R, the

probabilities F0(s) = P0(X ≤ s) = P01{X ≤ s} can be estimated by

F̂ (s) =
1

n

n∑
i=1

1{Xi ≤ s}

i.e. as the empirical expectation of the function x 7→ 1{x ≤ s}. This leads to a step-function

with n jumps of size 1/n at samplepoints, which estimates the distribution function F0. Gener-

alizing, any property of P0 that can be expressed in terms of an expectation of a P0-integrable

function of X, P0(g(X)), is estimable by the corresponding empirical expectation, Png(X).

(With regard to the estimator F̂ , the convergence F̂ (s) → F0(s) does not only hold for all

s ∈ R but even uniform in s, i.e. sups∈R |F̂ (s) − F0(s)| → 0, c.f. the Glivenko-Cantelli theo-

rem.)

To estimate a probability distribution (or any of its properties or parameters), many

different estimators may exist. Therefore, the use of any particular estimator constitutes

(another) choice made by the statistician analyzing the problem. Whether such a choice is a

good or a bad one depends on optimality criteria, which are either dictated by the particular

nature of the problem (see section 2.4 which extends the purely inferential point of view), or

based on more generically desirable properties of the estimator (note the use of the rather

ambiguous qualification “best guess” in definition 1.1.9).

Example 1.1.3. To illustrate what we mean by “desirable properties”, note the following.

When estimating P0 one may decide to use an estimator P̂ (Y ) because it has the property that

it is close to the true distribution of Y in total variation (see appendix A, definition A.2.1).

To make this statement more specific, the property that make such an estimator P̂ attractive

is that there exists a small constant ε > 0 and a (small) significance level 0 < α < 1, such

that for all P ∈P,

P
(
‖P̂ (Y )− P‖ < ε

)
> 1− α,

i.e. if Y ∼ P , then P̂ (Y ) lies close to P with high P -probability. Note that we formulate this

property “for all P in the model”: since P0 ∈P is unknown, the only way to guarantee that

this property holds under P0, is to prove that it holds for all P ∈P, provided that (1.2) holds.

A popular method of estimation that satisfies common optimality criteria in many (but

certainly not all!) problems is maximum-likelihood estimation.

Definition 1.1.10. Suppose that the model P is dominated by a σ-finite measure µ. The

likelihood principle says that one should pick P̂ ∈ P as an estimator for the distribution P0

of Y such that

p̂(Y ) = sup
P∈P

p(Y ).
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thus defining the maximum-likelihood estimator (or MLE) P̂ (Y ) for P0.

Remark 1.1.3. Note that P̂ does not depend on the particular dominating measure µ.

A word of caution is in order: mathematically, the above “definition” of the MLE begs

questions of existence and uniqueness: regarding P 7→ p(Y ) as a (stochastic) map on the

model (called the likelihood), there may not be any point in P where the likelihood takes

on its supremal value nor is there any guarantee that such a maximal point is unique with

P0-probability equal to one.

Remark 1.1.4. If P· : Θ → P parameterizes P, the above is extended to the maximum-

likelihood estimator θ̂(Y ) for θ0, when we note that supθ∈Θ pθ(Y ) = supP∈P p(Y ).

The above is only a very brief and rather abstract overview of the basic framework of

frequentist statistics, highlighting the central premise that a P0 for Y exists. It makes clear,

however, that frequentist inference concerns itself primarily with the stochastics of the random

variable Y and not with the context in which Y resides. Other than the fact that the model

has to be chosen “reasonably” based on the nature of Y , frequentist inference does not involve

any information regarding the background of the statistical problem in its procedures unless

one chooses to use such information explicitly (see, for example, remark 2.2.7 on penalized

maximum-likelihood estimation). In Bayesian statistics the use of background information is

an integral part of the procedure unless one chooses to disregard it: by the definition of a prior

measure, the statistician may express that he believes in certain points of the model more

strongly than others. This thought is elaborated on further in section 1.2 (e.g. example 1.2.1).

Similarly, results of estimation procedures are sensitive to the context in which they are

used: two statistical experiments may give rise to the same model formally, but the estimator

used in one experiment may be totally unfit for use in the other experiment.

Example 1.1.4. For example, if we interested in a statistic that predicts the rise or fall of a

certain share-price on the stockmarket based on its value over the past week, the estimator we

use does not have to be a very conservative one: we are interested primarily in its long-term

performance and not in the occasional mistaken prediction. However, if we wish to predict

the rise or fall of white-bloodcell counts in an HIV-patient based on last week’s counts, overly

optimistic predictions can have disastrous consequences.

Although in the above example, data and model are very similar in these statistical prob-

lems, the estimator used in the medical application should be much more conservative than

the estimator used in the stock-market problem. The inferential aspects of both questions are

the same, but the context in which such inference is made calls for adaptation. Such consider-

ations form the motivation for statistical decision theory, as explained further in section 2.4.
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1.2 Bayesian statistics

The subject of these lecture notes is an alternative approach to statistical questions known

as Bayesian statistics, after Rev. Thomas Bayes, the author of “An essay towards solving a

problem in the doctrine of chances”, (1763) [4]. Bayes considered a number of probabilistic

questions in which data and parameters are treated on equal footing. The Bayesian procedure

itself is explained in detail in chapter 2 and further chapters explore its properties. In this

section we have the more modest goal of illustrating the conceptual differences with frequentist

statistical analysis.

In Bayesian statistics, data and model form two factors of the same space, i.e. no formal

distinction is made between measured quantities Y and parameters θ. This point of view

may seem rather absurd in view of the definitions made in section 1.1, but in [4], Bayes gives

examples in which this perspective is perfectly reasonable (see example 2.1.2 in these lecture

notes). An element Pθ of the model is interpreted simply as the distribution of Y given the

parameter value θ, i.e. as the conditional distribution of Y |θ. The joint distribution of (Y, θ)

then follows upon specification of the marginal distribution of θ on Θ, which is called the

prior . Based on the joint distribution for the data Y and the parameters θ, straightforward

conditioning on Y gives rise to a distribution for the parameters θ|Y called the posterior

distribution on the model Θ. Hence, given the model, the data and a prior distribution,

the Bayesian procedure leads to a posterior distribution that incorporates the information

provided by the data.

Often in applications, the nature of the data and the background of the problem suggest

that certain values of θ are more “likely” than others, even before any measurements are done.

The model Θ describes possible probabilistic explanations of the data and, in a sense, the

statistician believes more strongly in certain explanations than in others. This is illustrated

by the following example, which is due to L. Savage [74].

Example 1.2.1. Consider the following three statistical experiments:

1. A lady who drinks milk in her tea claims to be able to tell which was poured first, the

tea or the milk. In ten trials, she determines correctly whether it was tea or milk that

entered the cups first.

2. A music expert claims to be able to tell whether a page of music was written by Haydn

or by Mozart. In ten trials conducted, he correctly determines the composer every time.

3. A drunken friend says that he can predict the outcome of a fair coin-flip. In ten trials,

he is right every time.

Let us analyse these three experiments in a frequentist fashion, e.g. we assume that the trials

are independent and possess a definite Bernoulli distribution, c.f. (1.1). In all three experi-

ments, θ0 ∈ Θ = [0, 1] is the per-trial probability that the person gives the right answer. We
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test their respective claims posing the hypotheses:

H0 : θ0 = 1
2 , H1 : θ0 >

1
2 .

The total number of successes out of ten trials is a sufficient statistic for θ and we use it

as our test-statistics, noting that its distribution is binomial with n = 10, θ = θ0 under H0.

Given the data Y with realization y of ten correct answers, applicable in all three examples,

we reject H0 at p-value 2−10 ≈ 0.1%. So there is strong evidence to support the claims made

in all three cases. Note that there is no difference in the frequentist analyses: formally, all

three cases are treated exactly the same.

Yet intuitively (and also in every-day practice), one would be inclined to treat the three

claims on different footing: in the second experiment, we have no reason to doubt the expert’s

claim, whereas in the third case, the friend’s condition makes his claim less than plausible. In

the first experiment, the validity of the lady’s claim is hard to guess beforehand. The outcome

of the experiments would be as expected in the second case and remarkable in the first. In the

third case, one would either consider the friend extremely lucky, or begin to doubt the fairness

of the coin being flipped.

The above example convincingly makes the point that in our intuitive approach to statis-

tical issues, we include all knowledge we have, even resorting to strongly biased estimators

if the model does not permit a non-biased way to incorporate it. The Bayesian approach to

statistics allows us to choose the prior such as to reflect this subjectivity: from the outset, we

attach more prior mass to parameter-values that we deem more likely, or that we believe in

more strongly. In the above example, we would choose a prior that concentrates more mass

at high values of θ in the second case and at low values in the third case. In the first case, the

absence of prior knowledge would lead us to remain objective, attaching equal prior weights

to high and low values of θ. Although the frequentist’s testing procedure can be adapted to

reflect subjectivity, the Bayesian procedure incorporates it rather more naturally through the

choice of a prior.

Subjectivist Bayesians view the above as an advantage; objectivist Bayesians and fre-

quentists view it as a disadvantage. Subjectivist Bayesians argue that personal beliefs are an

essential part of statistical reasoning, deserving of a explicit role in the formalism and interpre-

tation of results. Objectivist Bayesians and frequentists reject this thought because scientific

reasoning should be devoid of any personal beliefs or interpretation. So the above freedom in

the choice of the prior is also the Achilles’ heel of Bayesian statistics: fervent frequentists and

objectivist Bayesians take the point of view that the choice of prior is an undesirable source of

ambiguity, rather than a welcome way to incorporate “expert knowledge” as in example 1.2.1.

After all, if the subjectivist Bayesian does not like the outcome of his analysis, he can just

go back and change the prior to obtain a different outcome. Similarly, if two subjectivist

Bayesians analyze the same data they may reach completely different conclusions, depending

on the extent to which their respective priors differ.
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To a certain extent, such ambiguity is also present in frequentist statistics, since frequen-

tists make a choice for a certain point-estimator. For example, the use of either a maximum-

likelihood or penalized maximum-likelihood estimator leads to differences, the size of which

depends on the relative sizes of likelihood and penalty. (Indeed, through the maximum-a-

posteriori Bayesian point-estimator (see definition 2.2.5), one can demonstrate that the log-

prior-density can be viewed as a penalty term in a penalized maximum-likelihood procedure,

c.f. remark 2.2.7.) Yet the natural way in which subjectivity is expressed in the Bayesian

setting is more explicit. Hence the frequentist or objectivist Bayesian sees in this a clear

sign that subjective Bayesian statistics lacks universal value unless one imposes that the prior

should not express any bias (see section 3.2).

A second difference in philosophy between frequentist and Bayesian statisticians arises as a

result of the fact that the Bayesian procedure does not require that we presume the existence

of a “true, underlying distribution” P0 of Y (compare with (1.1)). The subjectivist Bayesian

views the model with (prior or posterior) distribution as his own, subjective explanation of

the uncertainty in the data. For that reason, subjectivists prefer to talk about their (prior or

posterior) “belief” concerning parameter values rather than implying objective validity of their

assertions. On the one hand, such a point of view makes intrinsic ambiguities surrounding

statistical procedures explicit; on the other hand, one may wonder about the relevance of

strictly personal belief in a scientific tradition that emphasizes universality of reported results.

The philosophical debate between Bayesians and frequentist has raged with varying inten-

sity for decades, but remains undecided to this date. In practice, the choice for a Bayesian

or frequentist estimation procedure is usually not motivated by philosophical considerations,

but by far more practical issues, such as ease of computation and implementation, common

custom in the relevant field of application, specific expertise of the researcher or other forms

of simple convenience. Recent developments [3] suggest that the philosophical debate will be

put to rest in favour of more practical considerations as well.

1.3 The frequentist analysis of Bayesian methods

Since this point has the potential to cause great confusion, we emphasize the following: this

course presents Bayesian statistics from a hybrid perspective, i.e. we consider Bayesian tech-

niques but analyze them with frequentist methods.

We take the frequentist point of view with regard to the data, e.g. assumption (1.1); we

distinguish between samplespace and model and we do not adhere to subjectivist interpre-

tations of results (although their perspective is discussed in the main text). On the other

hand, we endow the model with a prior probability measure and calculate the posterior dis-

tribution, i.e. we use concepts and definitions from Bayesian statistics. This enables us to

assess Bayesian methods on equal footing with frequentist statistical methods and extends

the range of interesting questions. Moreover, it dissolves the inherent ambiguity haunting the

subjectivist interpretation of statistical results.
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Note, however, that the derivation of expression (2.7) (for example), is the result of sub-

jectivist Bayesian assumptions on data and model. Since these assumptions are at odds with

the frequentist perspective, we shall take (2.7) as a definition rather than a derived form.

This has the consequence that some basic properties implicit by derivation in the Bayesian

framework, have to be imposed as conditions in the hybrid perspective (see remark 2.1.4).

Much of the material covered in these lecture notes does not depend on any particular

philosophical point of view, especially when the subject matter is purely mathematical. Nev-

ertheless, it is important to realize when philosophical issues may come into play and there

will be points where this is the case. In particular when discussing asymptotic properties of

Bayesian procedures (see chapter 4), adoption of assumption (1.1) is instrumental, basically

because discussing convergence requires a limit-point.

Notation and conventions

Throughout these notes, we make use of notation that is common in the mathematical-

statistics literature. In addition, the following notational conventions are used. The ex-

pectation of a random variable Z distributed according to a probability distribution P is

denoted PZ. Samples are denoted Y with realization y, or in the case of n i.i.d.-P0 obser-

vations, X1, . . . , Xn. The sample-average (or empirical expectation) for a sample X1, . . . , Xn,

denoted PnX, is defined PnX = n−1
∑n

i=1Xi (where it is assumed that X is P0-integrable);

the empirical process Gn is defined as GnX = n1/2(Pn − P0)X (where it is assumed that

P0(X − P0X)2 < ∞). The distribution function of the standard normal distribution is de-

noted Φ : R → [0, 1]. The transpose of a vector ` ∈ Rd is denoted `T ; the transpose of a

matrix I is denoted IT . The formulation “A(n) holds for large enough n” should be read as

“there exists an N ≥ 1 such that for all n ≥ N , A(n) holds”.

1.4 Exercises

Exercise 1.1. Let Y ∈ Y be a random variable with unknown distribution P0. Let P be

a model for Y , dominated by a σ-finite measure µ. Assume that the maximum-likelihood

estimator P̂ (Y ) (see definition 1.1.10) is well-defined, P0-almost-surely.

Show that if ν is a σ-finite measure dominating µ and we calculate the likelihood using ν-

densities, then the associated MLE is equal to P̂ (Y ). Conclude that the MLE does not depend

on the dominating measure used, c.f. remark 1.1.3.

Exercise 1.2. In the three experiments of example 1.2.1, give the Neyman-Person test for

hypotheses H0 and H1 at level α ∈ (0, 1). Calculate the p-value of the realization of 10

successes and 0 failures (in 10 Bernoulli trials according to H0).





Chapter 2

Bayesian basics

In this chapter, we consider the basic definitions and properties of Bayesian inferential and

decision-theoretic methods. Naturally the emphasis lies on the posterior distribution, which

we derive from the prior based on the subjectivist perspective. However, we also discuss

the way prior and posterior should be viewed if one assumes the frequentist point of view.

Furthermore, we consider point estimators derived from the posterior, credible sets, testing

of hypotheses and Bayesian decision theory. Throughout the chapter, we consider frequentist

methods side-by-side with the Bayesian procedures, for comparison and reference.

It should be stressed that the material presented here covers only the most basic Bayesian

concepts; further reading is recommended. Various books providing overviews of Bayesian

statistics are recommended, depending on the background and interest of the reader: a highly

theoretical treatment can be found in Le Cam (1986) [63], which develops a general, math-

ematical framework for statistics and decision theory, dealing with Bayesian methods as an

important area of its application. For a more down-to-earth version of this work, applied only

to smooth parametric models, the interested reader is referred to Le Cam and Yang (1990)

[64]. The book by Van der Vaart (1998) [83] contains a chapter on Bayesian statistics focusing

on the Bernstein-Von Mises theorem (see also section 4.4 in these notes). A general reference

of a more decision-theoretic inclination, focusing on Bayesian statistics, is the book by Berger

(1985) [8]; a more recent reference of a similar nature is Bernardo and Smith (1993) [13]. Both

Berger and Bernardo and Smith devote a great deal of attention to philosophical arguments in

favour of the Bayesian approach to statistics, staying rather terse with regard to mathematical

detail and focusing almost exclusively on parametric models. Recommendable is also Robert’s

“The Bayesian choice” (2001) [72], which offers a very useful explanation on computational

aspects of Bayesian statistics. Finally, Ripley (1996) [73] discusses Bayesian methods with a

very pragmatic focus on pattern classification. The latter reference relates all material with

applications in mind but does so based on a firm statistical and decision-theoretic background.

13
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2.1 Bayes’ rule, prior and posterior distributions

Formalizing the Bayesian procedure can be done in several ways. We start this section with

considerations that are traditionally qualified as being of a “subjectivist” nature, but even-

tually we revert to the “frequentist” point of view. Concretely this means that we derive an

expression for the posterior and prove regularity in the subjectivist framework. In a frequen-

tist setting, this expression is simply used as a definition and properties like regularity and

measurability are imposed. Ultimately the philosophical motivation becomes irrelevant from

the mathematical point of view, once the posterior and its properties are established.

Perhaps the most elegant (and decidedly subjectivist) Bayesian framework unifies sam-

plespace and model in a product space. Again, the measurement Y is a random variable

taking values in a samplespace Y with σ-algebra B. Contrary to the frequentist case, in the

Bayesian approach the model Θ is assumed to be a measurable space as well, with σ-algebra

G . The model parameter takes values θ ∈ Θ but is a random variable (denoted ϑ) in this con-

text! We assume that on the product-space Y ×Θ (with product σ-algebra F = σ(B × G ))

we have a probability measure

Π : σ(B × G )→ [0, 1], (2.1)

which is not a product measure. The probability measure Π provides a joint probability

distribution for (Y, ϑ), where Y is the observation and ϑ (the random variable associated

with) the parameter of the model.

Implicitly the choice for the measure Π defines the model in Bayesian context, by the

possibility to condition on ϑ = θ for some θ ∈ Θ. The conditional distribution ΠY |ϑ : B×Θ→
[0, 1] describes the distribution of the observation Y given the parameter ϑ. (For a discussion

of conditional probabilities, see appendix A, e.g. definition A.6.3 and theorem A.6.1). As

such, it defines the elements Pθ of the model P = {Pθ : θ ∈ Θ}, although the role they

play in Bayesian context is slightly different from that in a frequentist setting. The question

then arises under which requirements the conditional probability ΠY |ϑ is a so-called regular

conditional distribution.

Lemma 2.1.1. Assume that Θ is a Polish space and that the σ-algebra G contains the Borel

σ-algebra. Let Π be a probability measure, c.f. (2.1). Then the conditional probability ΠY |ϑ is

regular.

Proof The proof is a direct consequence of theorem A.6.1. �

The measures ΠY |ϑ( · |ϑ = θ) form a (Π-almost-sure) version of the elements Pθ of the

model P:

Pθ = ΠY |ϑ( · |ϑ = θ ) : B → [0, 1] (2.2)

Consequently, frequentist’s notion of a model is only represented up to null-sets of the marginal

distribution of ϑ, referred to in Bayesian context as the prior for the parameter ϑ.
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Definition 2.1.1. The marginal probability Π on G is the prior.

The prior is interpreted in the subjectivist’s philosophy as the “degree of belief” attached

to subsets of the model a priori, that is, before any observation has been made or incorporated

in the calculation. Central in the Bayesian framework is the conditional distribution for ϑ

given Y .

Definition 2.1.2. The conditional distribution

Πϑ|Y : G × Y → [0, 1], (2.3)

is called the posterior distribution.

The posterior is interpreted as a data-amended version of the prior, that is to say, the

subjectivist’s original “degree of belief”, corrected by observation of Y through conditioning,

i.e. the distribution for ϑ a posteriori (that is, after observations have been incorporated).

Assuming that the model P = {Pθ : θ ∈ Θ} is dominated by a σ-finite measure on Y ,

the above can also be expressed in terms of µ-densities pθ = dPθ/dµ : Y → R. Using Bayes’

rule (c.f. lemma A.6.2), we obtain the following expression for the posterior distribution:

Π(ϑ ∈ G |Y ) =

∫
G
pθ(Y ) dΠ(θ)∫

Θ
pθ(Y ) dΠ(θ)

, (2.4)

where G ∈ G is a measurable subset of the model P. Note that when expressed through

(2.4), the posterior distribution can be calculated based on a choice for the model (which

specifies pθ) with a prior Π and the data Y (or a realisation Y = y thereof).

Based on the above definitions, two remarks are in order with regard to the notion of

a model in Bayesian statistics. First of all, one may choose a large model P, but if for a

subset P1 ⊂P the prior assigns mass zero, then for all practical purposes P1 does not play

a role, since omission of P1 from P does not influence the posterior. As long as the model

is parametric, i.e. Θ ⊂ Rd, we can always use priors that dominate the Lebesgue measure,

ensuring that P1 is a “small” subset of Rd. However, in non-parametric models null-sets of

the prior and posterior may be much larger than expected intuitively (for a striking example,

see section 4.2, specifically the discussion of Freedman’s work).

Example 2.1.1. Taking the above argument to the extreme, consider a normal location model

P = {N(θ, 1) : θ ∈ R} with a prior Π = δθ1 (see example A.2.2), for some θ1 ∈ Θ, defined

on the Borel σ-algebra B. Then the posterior takes the form:

Π(ϑ ∈ A|Y ) =

∫
A
pθ(Y ) dΠ(θ)

/ ∫
Θ
pθ(Y ) dΠ(θ) =

pθ1(Y )

pθ1(Y )
Π(A) = Π(A).

for any A ∈ B. In other words, the posterior equals the prior, concentrating all its mass in

the point θ1. Even though we started out with a model that suggests estimation of location,
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effectively the model consists of only one point, θ1 ∈ Θ due to the choice of the prior. In

subjectivist terms, the prior belief is fully biased towards θ1, leaving no room for amendment

by the data when we condition to obtain the posterior.

This example raises the question which part of the model proper P plays a role. In that

respect, it is helpful to make the following definition.

Definition 2.1.3. In addition to (Θ,G ,Π) being a probability space, let (Θ,T ) be a topological

space. Assume that G contains the Borel σ-algebra B corresponding to the topology T . The

support supp(Π) of the prior Π is defined as:

supp(Π) =
⋂
{G ∈ G : G closed, Π(G) = 1}.

The viability of the above definition is established in the following lemma.

Lemma 2.1.2. For any topological space Θ with σ-algebra G that contains the Borel σ-algebra

B and any (prior) probability measure Π : G → [0, 1], supp(Π) ∈ G and Π(supp(Π)) = 1.

N ote that supp(Π) is closed, as it is an intersection of closed sets, supp(Π) ∈ B ⊂ G . The

proof that the support has measure 1 is left as exercise 2.7. �

In example 2.1.1, the model P consists of all normal distributions of the form N(θ, 1),

θ ∈ R, but the support of the prior supp(Π) equals the singleton {N(θ1, 1)} ⊂P.

Note that the support of the prior is defined based on a topology, the Borel σ-algebra of

which must belong to the domain of the prior measure. In parametric models this assumption

is rarely problematic, but in non-parametric models finding such a prior may be difficult and

the support may be an ill-defined concept. Therefore we may choose to take a less precise

but more generally applicable perspective: the model is viewed as the support of the prior

Π, but only up to Π-null-sets (c.f. the Π-almost-sure nature of the identification (2.2)). That

means that we may add to or remove from the model at will, as long as we make sure that

the changes have prior measure equal to zero: the model itself is a Π-almost-sure concept.

(Since the Bayesian procedure involves only integration of integrable functions with respect

to the prior, adding or removing Π-null-sets to/from the domain of integration will not have

unforeseen consequences.)

To many who have been introduced to statistics from the frequentist point of view, includ-

ing the parameter θ for the model as a random variable ϑ seems somewhat unnatural because

the frequentist role of the parameter is entirely different from that of the data. The following

example demonstrates that in certain situations the Bayesian point of view is not unnatural

at all.

Example 2.1.2. In the posthumous publication of “An essay towards solving a problem in the

doctrine of chances” in 1763 [4], Thomas Bayes included an example of a situation in which

the above, subjectivist perspective arises quite naturally. It involves a number of red balls and

one white ball placed on a table and has become known in the literature as Bayes’ billiard.
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We consider the following experiment: unseen by the statistician, someone places n red

balls and one white ball on a billiard table of length 1. Calling the distance between the white

ball and the bottom cushion of the table X and the distances between the red balls and the

bottom cushion Yi, (i = 1, . . . , n), it is known to the statistician that their joint distribution

is:

(X;Y1, . . . , Yn) ∼ U [0, 1]n+1, (2.5)

i.e. all balls are placed independently with uniform distribution. The statistician will be re-

ported the number K of red balls that is closer to the cushion than the white ball (the data,

denoted Y in the rest of this section) and is asked to give a distribution reflecting his beliefs

concerning the position of the white ball X (the parameter, denoted ϑ in the rest of this sec-

tion) based on K. His prior knowledge concerning X (i.e. without knowing the observed value

K = k) offers little information: the best that can be said is that X ∼ U [0, 1], the marginal

distribution of X, i.e. the prior. The question is how this distribution for X changes when

we incorporate the observation K = k, that is, when we use the observation to arrive at our

posterior beliefs based on our prior beliefs.

Since for every i, Yi and X are independent c.f. (2.5), we have,

P (Yi ≤ X|X = x) = P (Yi ≤ x) = x,

So for each of the red balls, determining whether it lies closer to the cushion than the white

ball amounts to a Bernoulli experiment with parameter x. Since in addition the positions

Y1, . . . , Yn are independent, counting the number K of red balls closer to the cushion than

the white ball amounts to counting “successes” in a sequence of independent Bernoulli exper-

iments. We conclude that K has a binomial distribution Bin(n;x), i.e.

P (K = k|X = x) =
n!

k!(n− k)!
xk(1− x)n−k.

It is possible to obtain the density for the distribution of X conditional on K = k from the

above display using Bayes’ rule (c.f. lemma A.6.2):

p(x|K = k) = P (K = k|X = x)
p(x)

P (K = k)
, (2.6)

but in order to use it, we need the two marginal densities p(x) and P (K = k) in the fraction.

From (2.5) it is known that p(x) = 1 and P (K = k) can be obtained by integrating

P (K = k) =

∫ 1

0
P (K = k|X = x) p(x) dx

Substituting in (2.6), we find:

p(x|K = k) =
P (K = k|X = x) p(x)∫ 1

0 P (K = k|X = x) p(x) dx
= B(n, k)xk(1− x)n−k.

where B(n, k) is a normalization factor. The x-dependence of the density in the above display

reveals that X|K = k is distributed according to a Beta-distribution, B(k + 1, n − k + 1), so

that the normalization factor B(n, k) must equal B(n, k) = Γ(n+ 2)/Γ(k + 1)Γ(n− k + 1).
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This provides the statistician with distributions reflecting his beliefs concerning the position

of the white ball for all possible values k for the observation K. Through conditioning on

K = k, the prior distribution of X is changed: if a relatively small number of red balls is

closer to the cushion than the white ball (i.e. in case k is small compared to n), then the white

ball is probably close to the cushion; if k is relatively large, the white ball is probably far from

the cushion (see figure 2.1).

k=1

k=2 k=3 k=4

k=5

0 1

k=0 k=6

Figure 2.1 Posterior densities for the position X of the white ball, given the number

k of red balls closer to the cushion of the billiard (out of a total of n = 6 red balls). For

the lower values of k, the white ball is close to the cushion with high probability, since

otherwise more red balls would probably lie closer to the cushion. This is reflected

by the posterior density for X|K = 1, for example, by the fact that it concentrates

much of its mass close to x = 0.

In many experiments or observations, the data consists of a sample of n repeated, stochas-

tically independent measurements of the same quantity. To accommodate this situation for-

mally, we choose Y equal to the n-fold product of a sample space X endowed with a σ-algebra

A , so that the observation takes the form Y = (X1, X2, . . . , Xn). The additional assumption

that the sample is i.i.d. (presently a statement concerning the conditional independence of

the observations given ϑ = θ) then reads:

ΠY |ϑ(X1 ∈ A1, . . . , Xn ∈ An |ϑ = θ ) =
n∏
i=1

ΠY |ϑ(Xi ∈ Ai |ϑ = θ ) =
n∏
i=1

Pθ(Xi ∈ Ai),

for all (A1, . . . , An) ∈ A n. Assuming that the model P = {Pθ : θ ∈ Θ} is dominated by

a σ-finite measure µ on X , the above can also be expressed in terms of µ-densities pθ =

dPθ/dµ : X → R. Using Bayes’ rule, we obtain the following expression for the posterior
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distribution:

Πn(ϑ ∈ G |X1, X2, . . . , Xn ) =

∫
G

n∏
i=1

pθ(Xi) dΠ(θ)

∫
Θ

n∏
i=1

pθ(Xi) dΠ(θ)

, (2.7)

where G ∈ G is a measurable subset of the model P.

Remark 2.1.1. In a dominated model, the Radon-Nikodym derivative (see theorem A.4.2) of

the posterior with respect to the prior is the likelihood function, normalized to be a probability

density function:

dΠ( · |X1, . . . , Xn)

dΠ
(θ) =

n∏
i=1

pθ(Xi)
/ ∫

Θ

n∏
i=1

pθ(Xi) dΠ(θ), (Pn0 − a.s.). (2.8)

The latter fact explains why such strong relations exist (e.g. the Bernstein-Von Mises theorem,

theorem 4.4.1) between Bayesian and maximum-likelihood methods. Indeed, the proportion-

ality of the posterior density and the likelihood provides a useful qualitative picture of the

posterior as a measure that concentrates on regions in the model where the likelihood is rel-

atively high. This may serve as a direct motivation for the use of Bayesian methods in a

frequentist context, c.f. section 1.3. Moreover, this picture gives a qualitative explanation of

the asymptotic behaviour of Bayesian methods: under suitable continuity-, differentiability-

and tail-conditions, the likelihood remains relatively high in small neighbourhoods of P0 and

drops off steeply outside in the large-sample limit. Hence, if the prior mass in those neighbour-

hoods is not too small, the posterior concentrates its mass in neighbourhoods of P0, leading to

the asymptotic behaviour described in chapter 4.

Returning to the distributions that play a role in the subjectivist Bayesian formulation,

there exists also a marginal for the observation Y .

Definition 2.1.4. The distribution PΠ : B → [0, 1] defined by

PΠ
n (X1 ∈ A1, . . . , Xn ∈ An ) =

∫
Θ

n∏
i=1

Pθ(Ai) dΠ(θ) (2.9)

is called the prior predictive distribution.

Strictly speaking the prior predictive distribution describes a subjectivist’s expectations

concerning the observations X1, X2, . . . , Xn based only on the prior Π, i.e. without involving

the data. More readily interpretable is the following definition.

Definition 2.1.5. For given n,m ≥ 1, the distribution PΠ
n,m defined by

PΠ
n,m(Xn+1 ∈ An+1, . . . , Xn+m ∈ An+m |X1, . . . , Xn ) =

∫
Θ

m∏
i=1

Pθ(An+i) dΠ(θ |X1, . . . , Xn ))

is called the posterior predictive distribution.
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The prior predictive distribution is subject to correction by observation through sub-

stitution of the prior by the posterior: the resulting posterior predictive distribution is

interpreted as the Bayesian’s expectation concerning the distribution of the observations

Xn+1, Xn+2, . . . , Xn+m given the observations X1, X2, . . . , Xn and the prior Π.

Remark 2.1.2. The form of the prior predictive distribution is the subject of de Finetti’s

theorem (see theorem A.2.2), which says that the distribution of a sequence (X1, . . . , Xn) of

random variables is of the form on the r.h.s. of the above display (with uniquely determined

prior Π) if and only if the sample (X1, . . . , Xn) is exchangeable, that is, if and only if the

joint distribution for (X1, . . . , Xn) equals that of (Xπ(1), . . . , Xπ(n)) for all permutations π of

n elements.

Remark 2.1.3. We conclude the discussion of the distributions that play a role in Bayesian

statistics with the following important point: at no stage during the derivation above, was

an “underlying distribution of the data” used or needed! For comparison we turn to assump-

tion (1.1), which is fundamental in the frequentist approach. More precisely, the assumption

preceding (2.1) (c.f. the subjectivist Bayesian approach) is at odds with (1.1), unless

Pn0 = PΠ
n =

∫
Θ
Pnθ dΠ(θ),

Note, however, that the l.h.s. is a product-measure, whereas on the r.h.s. only exchangeability

is guaranteed! (Indeed, the equality in the above display may be used as the starting point

for definition of a goodness-of-fit criterion for the model and prior (see section 3.3). The

discrepancy in the previous display makes the “pure” (e.g. subjectivist) Bayesian reluctant to

assume the existence of a distribution P0 for the sample.)

The distribution P0 could not play a role in our analysis if we did not choose to adopt

assumption (1.1). In many cases we shall assume that Y contains an i.i.d. sample of obser-

vations X1, X2, . . . , Xn where X ∼ P0 (so that Y ∼ Pn0 ). Indeed, if we would not make this

assumption, asymptotic considerations like those in chapter 4 would be meaningless. However,

adopting (1.1) leaves us with questions concerning the background of the quantities defined

in this section because they originate from the subjectivist Bayesian framework.

Remark 2.1.4. (Bayesian/frequentist hybrid approach) Maintaining the frequentist assump-

tion that Y ∼ P0 for some P0 requires that we revise our approach slightly: throughout the rest

of these lecture notes, we shall assume (1.1) and require the model P to be a probability space

(P,G ,Π) with a probability measure Π referred to as the prior. So the prior is introduced as a

measure on the model, rather than emergent as a marginal to a product-space measure. Model

and sample space are left in the separate roles they are assigned by the frequentist. We then

proceed to define the posterior by expression (2.7). Regularity of the posterior is imposed (for

a more detailed analysis, see Schervish (1995) [75] and Barron, Schervish and Wasserman

(1999) [7]). In that way, we combine a frequentist perspective on statistics with Bayesian
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methodology: we make use of Bayesian quantities like prior and posterior, but analyze them

from a frequentist perspective.

Remark 2.1.5. In places throughout these lecture notes, probability measures P are decom-

posed into a P0-absolutely-continuous part P‖ and a P0-singular part P⊥. Following Le Cam,

we use the convention that if P is not dominated by P0, the Radon-Nikodym derivative refers

to the P0-absolutely-continuous part only: dP/dP0 = dP‖/dP0. (See theorem A.4.2.) With

this in mind, we write the posterior as follows

Π(ϑ ∈ A |X1, X2, . . . , Xn ) =

∫
A

n∏
i=1

dPθ
dP0

(Xi) dΠ(θ)

∫
Θ

n∏
i=1

dPθ
dP0

(Xi) dΠ(θ)

, (Pn0 − a.s.) (2.10)

Since the data X1, X2, . . . are i.i.d.-P0-distributed, the P0-almost-sure version of the posterior

in the above display suffices. Alternatively, any σ-finite measure that dominates P0 may be

used instead of P0 in (2.10) while keeping the definition Pn0 -almost-sure. Such P0-almost sure

representations are often convenient when deriving proofs.

In cases where the model is not dominated, (2.10) may be used as the definition of the

posterior measure but there is no guarantee that (2.10) leads to sensible results!

Example 2.1.3. Suppose that the samplespace is R and the model P consists of all measures

of the form (see example A.2.2):

P =
m∑
j=1

αjδxj , (2.11)

for some m ≥ 1, with α1, . . . , αm satisfying αj ≥ 0,
∑m

j=1 αj = 1 and x1, . . . , xm ∈ R. A

suitable prior for this model exists: distributions drawn from the so-called Dirichlet process

prior are of the form (2.11) with (prior) probability one. There is no σ-finite dominating

measure for this model and hence the model can not be represented by a family of densities,

c.f. definition 1.1.3. In addition, if the true distribution P0 for the observation is also a convex

combination of Dirac measures, distributions in the model are singular with respect to P0 unless

they happen to have support-points in common with P0. Consequently definition (2.10) does

not give sensible results in this case. We have to resort to the subjectivist definition (2.3) in

order to make sense of the posterior distribution.

To summarize, the Bayesian procedure consists of the following steps

(i) Based on the background of the data Y , the statistician chooses a model P, usually

with some measurable parameterization Θ→P : θ 7→ Pθ.

(ii) A prior measure Π on P is chosen, based either on subjectivist or objectivist criteria.

Usually a measure on Θ is defined, inducing a measure on P.
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(iii) Based on (2.3), (2.4) or in the case of an i.i.d. sample Y = (X1, X2, . . . , Xn), on:

dΠn( θ |X1, X2, . . . , Xn ) =

n∏
i=1

pθ(Xi) dΠ(θ)

∫
Θ

n∏
i=1

pθ(Xi) dΠ(θ)

,

we calculate the posterior density or posterior as a function of the data.

(iv) We observe a realization of the data Y = y and use it to calculate a realisation of the

posterior.

The statistician may then infer properties of the parameter θ from the posterior Π( · |Y =

y ), giving them a subjectivist or objectivist interpretation. One important point: when

reporting the results of any statistical procedure, one is obliged to also reveal all relevant

details concerning the procedure followed and the data. So in addition to inference on θ, the

statistician should report on the nature and size of the sample used and, in the Bayesian case,

should always report choice of model and prior as well, with a clear motivation.

2.2 Bayesian point estimators

When considering questions of statistical estimation, the outcome of a frequentist procedure

is of a different nature than the outcome of a Bayesian procedure: a point-estimator (the

frequentist outcome) is a point in the model, whereas the posterior is a distribution on the

model. A first question, then, concerns the manner in which to compare the two. The con-

nection between Bayesian procedures and frequentist (point-)estimation methods is provided

by point-estimators derived from the posterior, called Bayesian point-estimators. Needless

to say, comparison of frequentist and Bayesian point-estimators requires that we assume the

“hybrid” point of view presented in remark 2.1.4.

We think of a reasonable Bayesian point-estimators as a point in the model around which

posterior mass is accumulated most, a point around which the posterior distribution is con-

centrated in some way. As such, any reasonable Bayesian point-estimator should represent the

location of the posterior distribution. But as is well known from probability theory, there is

no unique definition of the “location” of a distribution. Accordingly, there are many different

ways to define Bayesian point-estimators.

Remark 2.2.1. Arguably, there are distributions for which even the existence of a “location”

is questionable. For instance, consider the convex combination of point-masses P = 1
2δ−1 +

1
2δ+1 on (R,B). Reasonable definitions of location, like the mean and the median of P , all

assign as the location of P the point 0 ∈ R. Yet small neighbourhoods of 0 do not receive

any P -mass, so 0 can hardly be viewed as a point around which P concentrates its mass. The

intuitition of a distribution’s location can be made concrete without complications of the above
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nature, if we restrict attention to unimodal distributions. However, it is common practice to

formulate the notion for all distributions by the same definitions.

One quantity that is often used to represent a distribution’s location is its expectation.

This motivates the first definition of a Bayesian point-estimator: the posterior mean.

Definition 2.2.1. Consider a statistical problem involving data Y taking values in a sam-

plespace (Y ,B) and a model (P,G ) with prior Π. Assume that the maps P 7→ P (B),

(B ∈ B) are measurable with respect to G and that the posterior Π( · |Y ) is regular, Pn0 -almost-

surely. The posterior mean (or posterior expectation) is a probability measure P̂ : B → [0, 1],

defined

P̂ (B) =

∫
P
P (B) dΠ(P |Y ), (2.12)

P0-almost-surely, for every event B ∈ B.

Remark 2.2.2. In order to justify the above definition, we have to show that P̂ is a probability

measure, P0-almost-surely. Since the posterior is a regular conditional distribution, the map

B 7→ P̂ (B) is defined P0-almost-surely. Obviously, for all B ∈ B, 0 ≤ P̂ (B) ≤ 1. Let

(Bi)i≥1 ⊂ B be a sequence of disjoint events. Since (P, i) 7→ P (Bi) is non-negative and

measurable, Fubini’s theorem applies in the third equality below:

P̂
(⋃
i≥1

Bi

)
=

∫
P
P
(⋃
i≥1

Bi

)
dΠ(P |Y ) =

∫
P

∑
i≥1

P (Bi) dΠ(P |Y )

=
∑
i≥1

∫
P
P (Bi) dΠ(P |Y ) =

∑
i≥1

P̂ (Bi),

which proves σ-additivity of P̂ .

Remark 2.2.3. Note that, unless P happens to be convex, P̂ ∈ P is not guaranteed! In

other words, the posterior mean may lie outside the model!

In many practical situations, the model P is parametric with parameterization Θ→P :

θ 7→ Pθ. In that case a different definition of the posterior mean can be made.

Definition 2.2.2. Let P be a model parameterized by a convex subset Θ of Rd. Let Π be a

prior defined on Θ. If ϑ is integrable with respect to the posterior, the parametric posterior

mean is defined

θ̂1(Y ) =

∫
Θ
θ dΠ( θ |Y ) ∈ Θ, (2.13)

Pn0 -almost-surely.

Remark 2.2.4. The distinction between the posterior mean and the parametric posterior

mean, as made above, is non-standard: it is customary in the Bayesian literature to refer to

either as “the posterior mean”. See, however, example 2.2.1.
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In definition 2.2.2, convexity of Θ is a condition (instead of an afterthought, as with

definition 2.2.1): if Θ is not convex there is no guarantee that θ̂1 ∈ Θ, in which case Pθ̂1 is

not defined since θ̂1 does not lie in the domain of the parameterization. Definition 2.2.2 can

be extended to non-parametric models, i.e. models with an infinite-dimensional Θ. In that

case, regularity of the posterior reappears as a condition and the condition of “integrability”

of ϑ requires further specification.

It is tempting to assume that there is no difference between the posterior mean and the

parametric posterior mean if the model is parametric and priors are brought in correspondence.

This is not the case, however, as demonstrated by the following (counter)example.

Example 2.2.1. Consider a normal location model in two dimensions for an observation Y ,

where the location µ ∈ R2 lies on the unit circle and the covariance Σ is fixed and known:

P =
{
Pθ = N(µ(θ),Σ) : µ(θ) = (cos θ, sin θ), θ ∈ [0, 2π)

}
.

This is an identifiable, one-dimensional parametric model with convex parameterizing space

Θ = [0, 2π). Assume that Ξ is the uniform distribution on Θ (Ξ plays the role of the posterior;

it does not matter what shape the posterior really has, all we need is a counterexample). We

define the corresponding measure Ξ′ on P by applying Ξ to the pre-image of the parameter-

ization. By rotational symmetry of Ξ and Fubini’s theorem, the expectation of Y under P̂

is ∫
Y dP̂ =

∫
P
PY dΞ′(P ) =

∫
Θ
PθY dΞ(θ) =

1

2π

∫ 2π

0
µ(θ) dθ = (0, 0).

Note that none of the distributions in P has the origin as its expectation. We can also

calculate the expectation of Y under Pθ̂ in this situation:

θ̂1(Y ) =

∫
Θ
θ dΞ(θ) =

1

2π

∫ 2π

0
θ dθ = π,

which leads to Pθ̂Y = PπY = (−1, 0). Clearly, the posterior mean does not equal the point in

the model corresponding to the parametric posterior mean. In fact, we see from the above that

P̂ 6∈P.

The fact that the expectations of P̂ and Pθ̂ in example 2.2.1 differ makes it clear that

P̂ 6= Pθ̂,

unless special circumstances apply: if we consider a parameterization θ 7→ Pθ from a (closed,

convex) parameterizing space Θ with posterior measure Π(dθ) onto a space of probability

measures P (with induced posterior Π(dP )), it makes a difference whether we consider the

posterior mean as defined in (2.12), or calculate Pθ̂. The parametric posterior mean Pθ̂ lies

in the model P; P̂ lies in the closed convex hull co(P) of the model, but not necessarily

P̂ ∈P.
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Since there are multiple ways of defining the location of a distribution, there are more

ways of obtaining point-estimators from the posterior distribution. For example in a one-

dimensional parametric model, we can consider the posterior median defined by

θ̃(Y ) = inf
{
s ∈ R : Π(ϑ ≤ s|Y ) ≥ 1/2

}
,

i.e. the smallest value for θ such that the posterior mass to its left is greater than or equal

to 1/2. (Note that this definition simplifies in case the posterior has a continuous, strictly

monotone distribution function: in that case the median equals the (unique) point where

this distribution function equals 1/2.) More generally, we consider the following class of

point-estimators [63].

Definition 2.2.3. Let P be a model with metric d : P ×P → R and a prior Π on G

containing the Borel σ-algebra corresponding to the metric topology on P. Let ` : R→ R be a

convex loss-function ` : R→ R. The formal Bayes estimator is the minimizer of the function:

P → R : P 7→
∫

P
`(d(P,Q)) dΠ(Q |Y ),

over the model P (provided that such a minimizer exists and is unique).

The heuristic idea behind formal Bayes estimators is decision-theoretic (see section 2.4).

Ideally, one would like to estimate by a point P in P such that `(d(P, P0)) is minimal; if

P0 ∈ P, this would lead to P = P0. However, lacking specific knowledge on P0, we choose

to represent it by averaging over P weighted by the posterior, leading to the notion in

definition 2.2.3. Another useful point estimator based on the posterior is defined as follows.

Definition 2.2.4. Let the data Y with model P, metric d and prior Π be given. Suppose

that the σ-algebra on which Π is defined contains the Borel σ-algebra generated by the metric

topology. For given ε > 0, the small-ball estimator is defined to be the maximizer of the

function

P 7→ Π(Bd(P, ε) |Y ), (2.14)

over the model, where Bd(P, ε) is the d-ball in P of radius ε centred on P (provided that such

a maximizer exists and is unique).

Remark 2.2.5. Similarly to definition 2.2.4, for a fixed value p such that 1/2 < p < 1, we

may define a Bayesian point estimator as the centre point of the smallest d-ball with posterior

mass greater than or equal to p (if it exists and is unique (see also, exercise 2.6)).

If the posterior is dominated by a σ-finite measure µ, the posterior density with respect

to µ can be used as a basis for defining Bayesian point estimators.

Definition 2.2.5. Let P be a model with prior Π. Assume that the posterior is absolutely

continuous with respect to a σ-finite measure µ on P. Denote the µ-density of Π( · |Y ) by

θ 7→ π(θ|Y ). The maximum-a-posteriori estimator (or MAP-estimator, or posterior mode)
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θ̂2 for θ is defined as the point in the model where the posterior density takes on its maximal

value (provided that such a point exists and is unique):

π(θ̂2|Y ) = sup
θ∈Θ

π(θ|Y ). (2.15)

Remark 2.2.6. The MAP-estimator has a serious weak point: a different choice of dominat-

ing measure µ leads to a different MAP estimator! A MAP-estimator is therefore unspecified

unless we specify also the dominating measure used to obtain a posterior density. It is with

respect to this dominating measure that we define our estimator, so a motivation for the dom-

inating measure used is inherently necessary (and often conspicuously lacking). Often the

Lebesgue measure is used without further comment, or objective measures (see section 3.2)

are used. Another option is to use the prior measure as the dominating measure, in which

case the MAP estimator equals the maximum-likelihood estimator (see remark 2.2.7).

All Bayesian point estimators defined above as maximizers or minimizers over the model

suffer from the usual existence and uniqueness issues associated with extrema. However, there

are straightforward methods to overcome such issues. We illustrate using the MAP-estimator.

Questions concerning the existence and uniqueness of MAP-estimators should be compared

to those of the existence and uniqueness of M -estimators in frequentist statistics. Although

it is hard to formulate conditions of a general nature to guarantee that the MAP-estimator

exists, often one can use the following lemma to guarantee existence.

Lemma 2.2.1. Consider a parameterized model Θ → P : θ 7→ Pθ If the Θ is compact1

and the posterior density θ 7→ π(θ|Y ) is upper-semi-continuous (Pn0 -almost-surely) then the

posterior density takes on its maximum in some point in Θ, Pn0 -almost-surely.

To prove uniqueness, one has to be aware of various possible problems, among which

are identifiability of the model (see section 1.1, in particular definition 1.1.5). Consider-

ations like this are closely related to matters of consistency of M -estimators, e.g. Wald’s

consistency conditions for the maximum-likelihood estimator. The crucial property is called

well-separatedness of the maximum, which says that outside neighbourhoods of the maximum,

the posterior density must be uniformly strictly below the maximum. The interested reader

is referred to chapter 5 of van der Vaart (1998) [83], e.g. theorems 5.7 and 5.8.

Remark 2.2.7. There is an interesting connection between (Bayesian) MAP-estimation and

(frequentist) maximum-likelihood estimation. Referring to formula (2.7) we see that in an

i.i.d. experiment with parametric model, the MAP-estimator maximizes:

Θ→ R : θ 7→
n∏
i=1

pθ(Xi)π(θ),

1Compactness of the model is a requirement that may be unrealistic or mathematically inconvenient in

many statistical problems, especially when the model is non-parametric. However in a Bayesian context

Ulam’s theorem (see theorem A.2.3) offers a way to relax this condition.
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where it is assumed that the model is dominated and that the prior has a density π with re-

spect to the Lebesgue measure µ. If the prior had been uniform, the last factor would have

dropped out and maximization of the posterior density is maximization of the likelihood. There-

fore, differences between ML and MAP estimators are entirely due to non-uniformity of the

prior. Subjectivist interpretation aside, prior non-uniformity has an interpretation in the fre-

quentist setting as well, through what is called penalized maximum likelihood estimation (see,

Van de Geer (2000) [39]): Bayes’ rule (see lemma A.6.2) applied to the posterior density

πn(θ|X1, . . . , Xn) gives:

log πn(θ|X1, . . . , Xn) = log πn(X1, . . . , Xn|θ) + log π(θ) +D(X1, . . . , Xn),

where D is a (θ-independent, but stochastic) normalization constant. The first term equals the

log-likelihood and the logarithm of the prior plays the role of a penalty term when maximizing

over θ. Hence, maximizing the posterior density over the model Θ can be identified with

maximization of a penalized likelihood over Θ. So defining a penalized MLE θ̂n with the

logarithm of the prior density θ 7→ log π(θ) in the role of the penalty, the MAP-estimator

coincides with θ̂n. The above offers a direct connection between Bayesian and frequentist

methods of point-estimation. As such, it provides an frequentist interpretation of the prior as

a penalty in the ML procedure. The asymptotic behaviour of the MAP-estimator is discussed

in chapter 4 (see theorem 4.4.2).

2.3 Credible sets and Bayes factors

Besides point-estimation, frequentist statistics has several other inferential techniques at its

disposal. The two most prominent are the analysis of confidence intervals and the testing of

statistical hypotheses. Presently, it is assumed that the reader is familiar with these methods,

but the essential reasoning is summarized for reference and comparison. The goal of this

section is to formulate Bayesian analogs, so-called credible sets and Bayes factors respectively,

and to compare them with aforementioned frequentist techniques.

Before we consider the Bayesian definitions, we briefly review the frequentist procedures.

We assume that we have data Y and a parameterized model P = {Pθ : θ ∈ Θ} such that

Y ∼ Pθ0 for some θ0 ∈ Θ. For simplicity, we assume that Θ ⊂ R whenever the dimension of

Θ is of importance.

We start with the central ideas and definitions that play a role in the Neyman-Pearson ap-

proach to statistical hypothesis testing. In this context, the hypotheses are presumptions one

can make concerning the distribution of the data. Since the model contains all distributions

the statistician is willing to consider as possibilities for P0, the hypotheses are formulated in

terms of a partition of the model (or its parameterization) into two disjoint subsets. One of

them corresponds to the so-called null hypothesis and the other to the alternative hypoth-

esis, which do not play a symmetric role in the Neyman-Pearson procedure. The goal of
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Neyman-Pearson hypothesis testing is to find out whether or not the data contains “enough”

evidence to reject the null hypothesis as a likely explanation when compared to alternative

explanations. Sufficiency of evidence is formulated in terms of statistical significance.

For simplicity, we consider a so-called simple null hypothesis (i.e. a hypothesis consisting

of only one point in the model, which is assumed to be identifiable): let a certain point θ1 ∈ Θ

be given and consider the hypotheses:

H0 : θ0 = θ1, H1 : θ0 6= θ1,

where H0 denotes the null-hypothesis and H1 the alternative. By no means does frequentist

hypothesis testing equate to the corresponding classification problem, in which one would

treat H0 and H1 symmetrically and make a choice for one or the other based on the data (for

more on frequentist and Bayesian classification, see section 2.4).

To assess both hypotheses using the data, the simplest version of the Neyman-Pearson

method of hypothesis testing seeks to find a test-statistic T (Y ) ∈ R displaying different

behaviour depending on whether the data Y is distributed according to (a distribution in) H0

or in H1. To make this distinction more precise, we define a so-called critical region K ⊂ R,

such that Pθ1(T ∈ K) is “small” and Pθ(T 6∈ K) is “small” for all θ 6= θ1. What we mean

by “small” probabilities in this context is a choice for the statistician, a so-called significance

level α is to be chosen to determine when these probabilities are deemed “small”. That way,

upon realization Y = y, a distribution in the hypothesis H0 makes an outcome T (y) ∈ K

improbable compared to H1.

Definition 2.3.1. Let Θ→P : θ → Pθ be a parameterized model for a sample Y . Formulate

two hypotheses H0 and H1 by introducing a two-set partition {Θ0,Θ1} of the model Θ:

H0 : θ0 ∈ Θ0, H1 : θ0 ∈ Θ1.

We say that a test for these hypotheses based on a test-statistic T with critical region K is of

level α ∈ (0, 1) if the power function π : Θ→ [0, 1], defined by

π(θ) = Pθ
(
T (Y ) ∈ K

)
,

is uniformly small over Θ0:

sup
θ∈Θ0

π(θ) ≤ α. (2.16)

From the above definition we arrive at the conclusion that if Y = y and T (y) ∈ K,

hypothesis H0 is improbable enough to be rejected, since H0 forms an “unlikely” explanation

of observed data (at said significance level). The degree of “unlikeliness” can be quantified in

terms of the so-called p-value, which is the lowest significance level at which the realised value

of the test statistic T (y) would have led us to reject H0. Of course there is the possibility

that our decision is wrong and H0 is actually true but T (y) ∈ K nevertheless, so that our

rejection of the null hypothesis is unwarranted. This is called a type-I error ; a type-II error is
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made when we do not reject H0 while H0 is not true. The significance level α thus represents

a fixed upper-bound for the probability of a type-I error. Having found a collection of tests

displaying the chosen significance level, the Neyman-Pearson approach calls for subsequent

minimization of the Type-II error probability, i.e. of all the pairs (T,K) satisfying (2.16), one

prefers a pair that minimizes Pθ(T (Y ) 6∈ K), ideally uniformly in θ ∈ Θ1. However, generically

such uniformly most-powerful tests do not exist due to the possibility that different (T,K)

pairs are most powerful over distinct subsets of the alternative. The famed Neyman-Pearson

lemma [60] asserts that a most powerful test exists in the case Θ contains only two points and

can be extended to obtain uniformly most powerful tests in certain models.

We consider the Neyman-Pearson approach to testing in some more detail in the following

example while also extending the argument to the asymptotic regime. Here Y is an i.i.d.

sample and the test-statistic and critical region are dependent on the size n of this sample.

We investigate the behaviour of the procedure in the limit n→∞.

Example 2.3.1. Suppose that the data Y forms an i.i.d. sample from a distribution P0 = Pθ0

and that PθX = θ for all θ ∈ Θ. Moreover, assume that PθX
2 <∞ for all θ. Due to the law

of large numbers, the sample-average

Tn(X1, . . . , Xn) = PnX,

converges to θ under Pθ (for all θ ∈ Θ) and seems a suitable candidate for the test-statistic,

at least in the regime where the sample-size n is large (i.e. asymptotically). The central limit

theorem allows us to analyze matters in greater detail, for all s ∈ R:

Pnθ
(
GnX ≤ sσ(θ)

)
→ Φ(s), (n→∞). (2.17)

where σ(θ) denotes the standard deviation of X under Pθ. For simplicity, we assume that

θ 7→ σ(θ) is a known quantity in this derivation. The limit (2.17) implies that

Pnθ
(
Tn(X1, . . . , Xn) ≤ θ + n−1/2σ(θ) s

)
→ Φ(s), (n→∞).

Assuming that H0 holds, i.e. that θ0 = θ1, we then find that, given an asymptotic significance

level α ∈ (0, 1) and with the standard-normal quantiles denoted sα,

Pn0
(
Tn(X1, . . . , X2) ≤ θ1 + n−1/2σ(θ1)sα/2

)
→ 1− 1

2α,

For significance levels close to zero, we see that under the null-hypothesis, it is improbable to

observe Tn > θ1 + n−1/2σ(θ1)sα/2. It is equally improbable to observe Tn < θ1 − n−1/2σsα/2,

which means that we can take as our critical region Kn,α

Kn,α = R \ [θ1 − n−1/2σ(θ1)sα/2, θ1 + n−1/2σ(θ1)sα/2],

(Note that this choice for the critical region is not unique unless we impose that it be an interval

located symmetrically around θ1.) Then we are in a position to formulate our decision on the

null hypothesis, to reject H0 or not:
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(i) if Tn ∈ Kn,α, we reject H0 at significance level α, and,

(ii) if Tn 6∈ Kn,α, we do not see enough evidence in the data to reject H0 at significance level

α.

Beware of a very common philosophical pitfall in the last case: even under case (ii), we do

not draw the conclusion that H0 is accepted. The data does not provide enough evidence to

reject the null hypothesis, but that does not imply that we have enough evidence to accept it!

Note the behaviour of the procedure with varying sample-size: keeping the significance level

fixed, the width of the critical regions Kn,α is of order O(n−1/2), so smaller and smaller critical

regions can be used as more information concerning the distribution P0 (read, data) comes

available. Similarly, if instead we keep the critical region fixed, the probability for a Type-I

error (sometimes called the p-value if no fixed significance level is used) decreases with growing

sample-size.

Strictly speaking the reasoning we follow here is not exact, because in practice n is finite

and we are using a criterion based on the limit n → ∞. At any finite n, the distribution of

GnX may not be close to N(0, σ2). In general we do not know which minimal sample-size

n should be used in order for these distributions to be “sufficiently close”. Nevertheless, it

is common practice to use asymptotic tests like this one, in cases where the sample-size is

deemed to be large enough and the test-statistic is expected to assume its asymptotic behaviour

behaviour in close approximation.

It is important to stress that our criterion for tests is entirely geared at minimizing the

probability of rejecting H0 when in fact H0 contains the true distribution. As such, the testing

procedure we follow can only lead to one definite conclusion, rejection of the null hypothesis.

The inverse conclusion, acceptance of the null hypothesis, is never the result. Therefore, it is

crucial that we choose the null hypothesis to be an assertion that we would like to disprove.

In practice, one also tries to find a test such that the probability of not rejecting H0 when it is

not valid is also small. Before we formalize the latter, we generalize the concepts introduced

above in this section somewhat.

Note that the indicators for the events {Y ∈ Y : Tn(Y ) ∈ Kn} form a (bounded, positive)

sequence of random variables, on which we base the decision to reject H0 or not. The power

functions πn : Θ→ [0, 1] are simply the Pθ-expectations of these random variables.

Definition 2.3.2. Let P be a model for a sample X1, X2 . . . taking values in X and assume

that the true distribution of the data lies in the model, (X1, X2, . . .) ∼ P0 ∈ P. Formulate

two hypotheses H0 and H1 by introducing a two-set partition {P0,P1} of the model P:

H0 : P0 ∈P0, H1 : P0 ∈P1.

A test sequence (φn)n≥1 is a sequence of statistics φn : X n → [0, 1], (for all n ≥ 1). An

asymptotic test is defined as a criterion for the decision to reject H0 or not, based on (a

realization of) φn(X1, . . . , Xn) and is studied in the limit n→∞.
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An example of such a criterion is the procedure given in definition 2.3.1 and example 2.3.1,

where test-functions take on the values zero or one depending on the (realized) test-statistic

and the critical region. When we replace indicators by test functions as in definition 2.3.2

criteria may vary depending on the nature of the test functions used.

Definition 2.3.3. Extending definition 2.3.2, we define the power function sequence of the

test sequence (φn) as a map πn : P → [0, 1] on the model defined by:

πn(P ) = Pφn.

Like in definition 2.3.1, the quality of the test depends on the behaviour of the power

sequence on P0 and P1 respectively. If we are interested exclusively in rejection of the null

hypothesis, we could reason like in definition 2.3.1 and set a significance level α to select only

those test sequences that satisfy

sup
P∈P0

πn(P ) ≤ α.

Subsequently, we prefer test sequences that have high power on the alternative. For example,

if we have two test sequences (φn) and (ψn) and a point P ∈P1 such that

lim
n→∞

Pφn ≥ lim
n→∞

Pψn, (2.18)

then (φn) is said to be asymptotically more powerful than (ψn) at P . If (2.18) holds for

all P ∈ P1, the test sequence (φn) is said to be uniformly asymptotically more powerful

than (ψn). If one can show that this holds for all test sequences (ψn), then (φn) is said

to be uniformly asymptotically most powerful. Note, however, that the above ordering of

test sequences is not complete: it is quite possible that (φn) is asymptotically more powerful

than (ψn) on a subset of P1, whereas on its complement in P1, (ψn) is asymptotically more

powerful. As a result, uniformly most powerful tests do not exist in many problems.

Besides providing a criterion for rejection of a null hypothesis, test sequences may be used

to indicate whether the true distribution of the data resides in P0 or P1 (where now, P0

and P1 are disjoint but may not cover all of P). This requires that we treat H0 and H1 on a

symmetrical footing, much like in a classification problem. For that purpose, one would like

to consider test sequences (φn) such that the quantity

sup
P∈P0

Pφn + sup
P∈P1

P (1− φn), (2.19)

(which is sometimes also referred to as “the power function”) is “small” in the limit n→∞,

possibly quantified by introduction of a significance level pertaining to both type-I and type-

II errors simultaneously. In many proofs of Bayesian limit theorems (see chapter 4), a test

sequence (φn) is needed such that (2.19) goes to zero, or is bounded by a sequence (an)

decreasing to zero (typically an = e−nD for some D > 0). The existence of such test sequences

forms the subject of section 4.5.
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Closely related to hypothesis tests are confidence intervals. Suppose that pose our infer-

ential problem differently: our interest now lies in using the data Y ∼ P0 to find a data-

dependent subset C(Y ) of the model that contains P0 with “high” probability. Again, “high”

probability requires quantification in terms of a level α, called the confidence level.

Definition 2.3.4. Let Θ → P : θ 7→ Pθ be a parameterized model; let Y ∼ Pθ0 for some

θ0 ∈ Θ. Choose a confidence level α ∈ (0, 1). Let C(Y ) be subset of Θ dependent only on the

data Y . Then C(Y ) is a confidence region for θ of confidence level α, if

Pθ
(
θ ∈ C(Y )

)
≥ 1− α, (2.20)

for all θ ∈ Θ.

The dependence of C on the data Y is meant to express that C(Y ) can be calculated once

the data has been observed. The confidence region may also depend on other quantities that

are known to the statistician, so C(Y ) is a statistic (see definition 1.1.9). Note also that the

dependence of C(Y ) on the data Y makes C(Y ) a random subset of the model. Compare this

to point estimation, in which the data-dependent estimator is a random point in the model.

Like hypothesis testing, confidence regions can be considered from an asymptotic point of

view, as demonstrated in the following example.

Example 2.3.2. We consider the experiment of example 2.3.1, i.e. we suppose that the data

Y forms an i.i.d. sample from a distribution P0 = Pθ0 or R and that PθX = θ for all θ ∈ Θ.

Moreover, we assume that for some known constant S > 0, σ2(θ) = VarθX ≤ S2, for all

θ ∈ Θ. Consider the sample-average Tn(X1, . . . , Xn) = PnX. Choose a confidence level

α ∈ (0, 1). The limit (2.17) can be rewritten in the following form:

Pnθ
(
|T (X1, . . . , Xn)− θ| ≤ n−1/2σ(θ)sα/2

)
→ 1− α, (n→∞). (2.21)

Define Cn by

Cn(X1, . . . , Xn) =
[
T (X1, . . . , Xn)− n−1/2Ssα/2, T (X1, . . . , Xn) + n−1/2Ssα/2

]
.

Then, for all θ ∈ Θ,

lim
n→∞

Pnθ
(
θ ∈ Cn(X1, . . . , Xn)

)
≥ 1− α.

Note that the θ-dependence of σ(θ) would violate the requirement that Cn be a statistic: since

the true value θ0 of θ is unknown, so is σ(θ). Substituting the (known) upper-bound S for

σ(θ) enlarges the σ(θ)-interval that follows from (2.21) to its maximal extent, eliminating the

θ-dependence. In a realistic situation, one would not use S but substitute σ(θ) by an estimator

σ̂(Y ), which amounts to the use of a plug-in version of (2.21). As a result, we would also have

to replace the standard-normal quantiles sα by the quantiles of the Student t-distribution.

Clearly, confidence regions are not unique, but of course small confidence regions are more

informative than large ones: if, for some confidence level α, two confidence regions C(Y ) and
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D(Y ) are given, both satisfying (2.20) for all θ ∈ Θ, and C(Y ) ⊂ D(Y ), Pθ-almost-surely for

all θ, then C(Y ) is preferred over D(Y ).

The Bayesian analogs of tests and confidence regions are called Bayes factors and credible

regions, both of which are derived from the posterior distribution. We start by considering

credible sets. The rationale behind their definition is exactly the same one that motivated

confidence regions: we look for a subset D of the model that is as small as possible, while

receiving a certain minimal probability. Presently, however, the word “probability” is in line

with the Bayesian notion, i.e. probability according to the posterior distribution.

Definition 2.3.5. Let (Θ,G ) be a measurable space parameterizing a model Θ→P : θ 7→ Pθ

for data Y , with prior Π : G → [0, 1]. Choose a level α ∈ (0, 1). Let D ∈ G be a subset of Θ.

Then D is a level-α credible set for ϑ, if

Π
(
ϑ ∈ D

∣∣ Y ) ≥ 1− α. (2.22)

In a Bayesian setting, one interprets Π(ϑ ∈ D|Y ) as the probability of finding ϑ in D, given

the data. Note that credible sets are random sets, since they are defined based on the posterior

which, in turn, depends on the sample: this data-dependence can be made explicit by writing

credible sets as D(Y ) instead of D. In practice, one calculates the posterior distribution from

the prior and the data and, based on that, proceeds to derive a subset D(Y ) such that (2.22)

is satisfied. A credible set is sometimes referred to as a credible region, or, if D is an interval

in a one-dimensional parametric model, a credible interval.

Remark 2.3.1. In smooth, parametric models for i .i .d . data there is an close, asymptotic

relation between Bayesian credible sets and frequentist confidence intervals centred on the

maximum-likelihood estimator: the Bernstein-von Mises theorem (see section 4.4) implies

that level-α credible regions coincide with abovementioned level-α confidence intervals asymp-

totically! In situations where it is hard to calculate the ML estimator or to construct the

corresponding confidence interval explicitly, it is sometimes relatively easy to obtain credible

regions (based on a simulated sample from the posterior, as obtained from the MCMC pro-

cedure (see section 6.1)). In such cases, one can calculate credible regions and conveniently

interpret them as confidence intervals centred on the MLE, due to theorem 4.4.1.

Definition 2.3.5 suffices to capture the concept of a credible set, but offers too much freedom

in the choice of D: given a level α > 0, many sets will satisfy (2.22), just like confidence regions

can be chosen in many different ways. Note that, also here, we prefer smaller sets over large

ones: if, for some level α, two different level-α credible sets F and G are given, both satisfying

(2.22) and F ⊂ G, then F is preferred over G. If the posterior is dominated with density

θ 7→ π(θ|Y ), we can be more specific. We define, for every k ≥ 0, the level-set

D(k) =
{
θ ∈ Θ : π(θ|Y ) ≥ k

}
, (2.23)

and consider the following.
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Definition 2.3.6. Let (Θ,G ) a measurable space parameterizing a model Θ → P : θ 7→ Pθ

for data Y ∈ Y , with prior Π : G → [0, 1]. Assume that the posterior is dominated by a

σ-finite measure µ on (Θ,G ), with density π( · |Y ) : Θ → R. Choose α ∈ (0, 1). A level-α

HPD-credible set (from highest posterior density) for ϑ is the subset Dα = D(kα), where kα

equals:

kα = sup
{
k ≥ 0 : Π(ϑ ∈ D(k)|Y ) ≥ 1− α

}
.

In other words, Dα is the smallest level-set of the posterior density that receives posterior

mass greater than or equal to 1 − α. Note that HPD-credible sets depend on the choice of

dominating measure: if we had chosen to use a different measure µ, HPD-credible sets would

have changed as well! One may wonder what happens if the posterior is dominated by the

prior and we use the density of the posterior with respect to the prior to define HPD-credible

regions.

Lemma 2.3.1. Let (Θ,G ) a measurable space parameterizing a model Θ → P : θ 7→ Pθ for

data Y taking values in a measurable space (Y ,B). Assume that the model is dominated by

some σ-finite measure ν : B → R, with pθ : Y → R is the ν-density of Pθ for every θ ∈ Θ.

Let Π1,Π2 : G → [0, 1] be two priors, such that Π1 � Π2 and Π2 � Π1. Denote the posterior

densities with respect to Π1,Π2 as π1( · |Y ), π2( · |Y ) : Y → R and corresponding HPD-credible

sets as D1,α, D2,α. Then

D1,α = D2,α,

for all α ∈ (0, 1).

Proof Under the conditions stated, the densities θ 7→ π1(θ|Y ) and θ 7→ π2(θ|Y ) are both of

the form (2.8). Note that both π1(θ|Y ) and π1(θ|Y ) are almost-sure expressions with respect

to their respective priors, but since Π1 � Π2 and Π2 � Π1 by assumption, Π1-almost-sureness

and Π2-almost-sureness are equivalent. From (2.8), we see that

π1(θ|Y )

π2(θ|Y )
=

∫
Θ
pθ(Y ) dΠ2(θ)∫

Θ
pθ(Y ) dΠ1(θ)

= K(Y ) > 0,

almost-surely with respect to both priors (and P0). So the fraction of posterior densities is a

positive constant as a function of θ. Therefore, for all k ≥ 0,

D1(k) =
{
θ ∈ Θ : π1(θ|Y ) ≥ k

}
=
{
θ ∈ Θ : π2(θ|Y )K(Y ) ≥ k

}
= D2

(
K(Y )−1k

)
.

and, hence, for all α ∈ (0, 1),

k1,α = sup
{
k ≥ 0 : Π(ϑ ∈ D2(K(Y )−1k)|Y ) ≥ 1− α

}
= K(Y ) k2,α.

To conclude,

D1,α = D1(k1,α) = D2

(
K(Y )−1k1,α) = D2(k2,α) = D2,α.
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The above lemma proves that using the posterior density with respect to the prior leads

to HPD-credible sets that are independent of the choice of prior. This may be interpreted

further, by saying that only the data is of influence on HPD-credible sets based on the posterior

density with respect to the prior. Such a perspective is attractive to the objectivist, but rather

counterintuitive from a subjectivist point of view: a prior chosen according to subjectivist

criteria places high mass in subsets of the model that the statistician attaches “high belief”

to. Therefore, the density of the posterior with respect to the prior can be expected to

be relatively small in those subsets! As a result, those regions may end up in Dα only for

relatively high values of α. However, intuition is to be amended by mathematics in this case:

when we say above that only the data is of influence, this is due entirely to the likelihood

factor in (2.8). Rather than incorporating both prior knowledge and data in HPD credible

sets, the above construction emphasizes the differences between prior and posterior beliefs,

which lie entirely in the data and are represented in the formalism by the likelihood. (We shall

reach a similar conclusion when considering the difference between posterior odds and Bayes

factors later in this section). To present the same point from a different perspective, HPD

credible regions based on the posterior density with respect to the prior coincide with levelsets

of the likelihood and centre on the ML estimate if the likelihood is smooth enough and has

a well-separated maximum (as a function on the model). We shall see that the coincidence

between confidence regions and credible sets becomes more pronounced in the large-sample

limit when we study the Bernstein-Von Mises theorem (see chapter 4 for more on large-sample

limiting behaviour of the posterior).

Bayesian hypothesis testing is formulated in a far more straightforward fashion than fre-

quentist methods based on the Neyman-Pearson approach. The two hypotheses H0 and H1

correspond to a two-set partition {Θ0,Θ1} of the model Θ and for each of the parts, we have

both posterior and prior probabilities. Based on the proportions between those, we shall

decide which hypothesis is the more likely one. It can therefore be remarked immediately

that in the Bayesian approach, the hypotheses are treated on equal footing, a situation that is

more akin to classification than to Neyman-Pearson hypothesis testing. To introduce Bayesian

hypothesis testing, we make the following definitions.

Definition 2.3.7. Let (Θ,G ) a measurable space parameterizing a model Θ → P : θ 7→ Pθ

for data Y ∈ Y , with prior Π : G → [0, 1]. Let {Θ0,Θ1} be a partition of Θ such that

Π(Θ0) > 0 and Π(Θ1) > 0. The prior and posterior odds ratios are defined by Π(Θ0)/Π(Θ1)

and Π(Θ0|Y )/Π(Θ1|Y ) respectively. The Bayes factor in favour of Θ0 is defined to be

B =
Π(Θ0|Y )

Π(Θ1|Y )

Π(Θ1)

Π(Θ0)
.

When doing Bayesian hypothesis testing, we have a choice of which ratio to use and that

choice will correspond directly with a choice for subjectivist or objectivist philosophies. In
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the subjectivist’s view, the posterior odds ratio has a clear interpretation: if

Π(Θ0|Y )

Π(Θ1|Y )
> 1,

then the probability of ϑ ∈ Θ0 is greater than the probability of ϑ ∈ Θ0 and hence, the

subjectivist decides to adopt H0 rather than H1. If, on the other hand, the above display is

smaller than 1, the subjectivist decides to adopt H1 rather than H0. The objectivist would

object to this, saying that the relative prior weights of Θ0 and Θ1 can introduce a heavy bias

in favour of one or the other in this approach (upon which the subjectivist would answer that

that is exactly what he had in mind). Therefore, the objectivist would prefer to use a criterion

that is less dependent on the prior weights of Θ0 and Θ1. We look at a very simple example

to illustrate the point.

Example 2.3.3. Let Θ be a dominated model that consists of only two points, θ0 and θ1 and

let Θ0 = {θ0}, Θ1 = {θ1}, corresponding to simple null and alternative hypotheses H0, H1.

Denote the prior by Π and assume that both Π({θ0}) > 0 and Π({θ1}) > 0. By Bayes rule,

the posterior weights of Θ0 and Θ1 are

Π(ϑ ∈ Θi|Y ) =
pθi(Y )Π(Θi)

pθ0(Y )Π(Θ0) + pθ1(Y )Π(Θ1)
,

for i = 0, 1. Therefore, the posterior odds ratio takes the form:

Π(ϑ ∈ Θ0|Y )

Π(ϑ ∈ Θ1|Y )
=
pθ0(Y )Π(Θ0)

pθ1(Y )Π(Θ1)
,

and the Bayes factor equals the likelihood ratio:

B =
pθ0(Y )

pθ1(Y )
.

We see that the Bayes factor does not depend on the prior weights assigned to Θ0 and Θ1 (in

this simple example), but the posterior odds ratio does. Indeed, suppose we stack the prior

odds heavily in favour of Θ0, by choosing Π(Θ0) = 1−ε and Π(Θ1) = ε (for some small ε > 0).

Even if the likelihood ratio pθ0(Y )/pθ1(Y ) is much smaller than one (but greater than ε/1−ε),

the subjectivist’s criterion favours H0. In that case, the data clearly advocates hypothesis H1

but the prior odds force adoption of H0. The Bayes factor B equals the likelihood ratio (in

this example), so it does not suffer from the bias imposed on the posterior odds.

The objectivist prefers the Bayes factor to make a choice between two hypotheses: if B > 1

the objectivist adopts H0 rather than H1; if, on the other hand, B < 1, then the objectivist

adopts H1 rather than H0. In example 2.3.3 the Bayes factor is independent of the choice of

the prior. In general, the Bayes factor is not completely independent of the prior, but it does

not depend on the relative prior weights of Θ0 and Θ1. We prove this using the following

decomposition of the prior:

Π(A) = Π(A|Θ0) Π(Θ0) + Π(A|Θ1) Π(Θ1), (2.24)
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for all A ∈ G (where it is assumed that Π(Θ0) > 0 and Π(Θ1) > 0). In the above display,

Π( · |Θi) can be any probability measure on Θi (i = 0, 1), and since Π(Θ0) + Π(Θ1) = 1, Π is

decomposed as a convex combination of two probability measures on Θ0 and Θ1 respectively.

The Bayes factor is then rewritten using Bayes’ rule (see lemma A.6.1):

B =
Π(Θ0|Y )

Π(Θ1|Y )

Π(Θ1)

Π(Θ0)
=

Π(Y |Θ0)

Π(Y |Θ1)
,

where, in a dominated model,

Π(Y |Θi) =

∫
Θi

pθ(Y ) dΠ(θ|Θi),

for i = 0, 1. In terms of the decomposition (2.24), B depends on Π( · |Θ0) and Π( · |Θ1), but

not on Π(Θ0) and Π(Θ1). So using Bayes factors instead of posterior odds exactly eliminates

the bias introduced by non-zero prior odds.

Remark 2.3.2. The condition that both Θ0 and Θ1 receive prior mass strictly above zero

is important since Bayes factors and odds ratios are based on conditioning of ϑ. Bayesian

hypothesis testing is sensible only if both Θ0 and Θ1 receive non-zero prior mass. This re-

mark plays a role particularly when comparing a simple null hypothesis to an alternative, as

illustrated in exercise 2.10.

2.4 Decision theory and classification

Many practical problems require that we make an observation and based on the outcome, make

a decision of some kind. For instance when looking for the diagnosis for a patient, a doctor will

observe variables like the patients temperature, blood-pressure and appearance, in addition

to the results of chemical and physical scans to come to a decision regarding the affliction

the patient is probably suffering from. Another example concerns the financial markets, in

which past stock- and option-prices are considered by analysts to decide whether to buy or

sell stocks and derivatives. In a chemical plant, regulation of a chemical process amounts to

a succession of decisions to control and optimize conditions, based on the measurement of

thermo-dynamical quantities and concentrations of chemicals involved in the reaction. In this

section, we look at problems of this nature, first from a frequentist perspective and then with

the Bayesian approach.

Practical problems like those described above usually involve optimality criteria that are

prescribed by the context of the problem itself: for example, when a doctor makes the wrong

diagnosis for a patient suffering from cancer the consequences can be most serious, whereas

the misdiagnosis of a case of influenza is usually no more than unfortunate. In any useful

statistical procedure meant to assist in medical diagnosis, such differences should be reflected

in the decision-making procedure. That is certainly not the case for the methods that we have

discussed thus far. Up to this point, we have used optimality criteria of a more general nature,
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like the accuracy of an estimation procedure, coverage probabilities for confidence intervals

or the probability of Type-I and type-II errors in a testing procedure.

The distinction lies in the nature of the optimality criteria: so far we have practiced

what is called statistical inference, in which optimality is formulated entirely in terms of

the stochastic description of the data. For that reason, it is sometimes said that statistical

inference limits itself to those questions that “summarize the data”. By contrast, statistical

decision theory formalizes the criteria for optimality by adopting the use of a so-called loss-

function to quantify the consequences of wrong decisions in a way prescribed by the context

of the statistical problem.

In statistical decision theory the nomenclature is slightly different from that introduced

earlier. We consider a system that is in an unknown state θ ∈ Θ, where Θ is called the

state-space. The observation Y takes its values in the samplespace Y , a measurable space

with σ-algebra B. The observation is stochastic, its distribution Pθ : B → [0, 1] being

dependent on the state θ of the system. The observation does not reveal the state of the

system completely or with certainty. Based on the outcome Y = y of the observation, we

take a decision a ∈ A (or perform an action a, as some prefer to say), where A is the called

the decision-space. For each state θ of the system there may be an optimal or prescribed

decision, but since observation of Y does not give us the state θ of the system with certainty,

the decision is stochastic and may be wrong. The goal of statistical decision theory is to arrive

at a rule that decides in the best possible way given only the data Y .

The above does not add anything new to the approach we were already following: aside

from the names, the concepts introduced here are those used in the usual problem of statisti-

cally estimating a ∈ A . Decision theory distinguishes itself through its definition of optimality

in terms of a so-called loss-function.

Definition 2.4.1. Any lower-bounded function L : Θ×A → R may serve as a loss-function.

The utility-function is −L : Θ×A → R.

(Although statisticians talk about loss-functions, people in applied fields often prefer to

talk of utility-functions, which is why the above definition is given both in a positive and

a negative version.) The interpretation of the loss-function is the following: if a particular

decision a is taken while the state of the system is θ, then a loss L(θ, a) is incurred which can

be either positive (loss) or negative (profit). To illustrate, in systems where observation of

the state is direct (i.e. Y = θ) and non-stochastic, the optimal decision a(θ) given the state

θ is the value of a that minimizes the loss L(θ, a). However, the problem we have set is more

complicated because the state θ is unknown and can not be measured directly. All we have is

the observation Y .

Definition 2.4.2. Let A be a measurable space with σ-algebra H . A measurable δ : Y → A

is called a decision rule.
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A decision-rule is an automated procedure to arrive at a decision δ(y), given that the

observation is Y = y. We denote the collection of all decision rules under consideration by ∆.

Clearly our goal will be to find decision rules in ∆ that “minimize the loss” in an appropriate

sense. The above basic ingredients of decision-theoretic problems play a role in both the

frequentist and Bayesian analysis. We consider the frequentist approach first and then look

at decision theory from a Bayesian perspective.

In frequentist decision theory we assume that Y ∼ Pθ0 for some state θ0 ∈ Θ and we

analyze the expectation of the loss.

Definition 2.4.3. The risk-function R : Θ × ∆ → R is defined as the expected loss under

Y ∼ Pθ when using δ,

R(θ, δ) =

∫
L(θ, δ(Y )) dPθ. (2.25)

Of interest to the frequentist is only the expected loss under the true distribution Y ∼ Pθ0 .

But since θ0 is unknown, we are forced to consider all values of θ, i.e. look at the risk-function

θ 7→ R(θ, δ) for each decision rule δ.

Definition 2.4.4. Let the state-space Θ, states Pθ, (θ ∈ Θ), decision space A and loss L be

given. Choose δ1, δ2 ∈ ∆. The decision rule δ1 is R-better than δ2, if

∀θ∈Θ : R(θ, δ1) < R(θ, δ2). (2.26)

A decision rule δ is admissible if there exists no δ′ ∈ ∆ that is R-better than δ (and inadmissible

if such a δ′ does exist).

It is clear that the definition of R-better decision-rules is intended to order decision rules:

if the risk-function associated with a decision-rule is relatively small, then that decision rule

is preferable. Note, however, that the ordering we impose by definition 2.4.4 may be partial

rather than complete: pairs δ1, δ2 of decision rules may exist such that neither δ1 nor δ2 is

R-better than the other. This is due to the fact that δ1 may perform better (in the sense that

R(θ, δ1) ≤ R(θ, δ2)) for values of θ in some Θ1 ⊂ Θ, while δ2 performs better in Θ2 = Θ \Θ1,

resulting in a situation where (2.26) is true for neither. For that reason, it is important to find

a way to compare risks (and thereby decision rules) in a θ-independent way and thus arrive

at a complete ordering among decision rules. This motivates the following definition.

Definition 2.4.5. (Minimax decision principle) Let the state-space Θ, states Pθ, (θ ∈ Θ),

decision space A and loss L be given. The function

∆→ R : δ 7→ sup
θ∈Θ

R(θ, δ)

is called the minimax risk. Let δ1, δ2 ∈ ∆ be given. The decision rule δ1 is minimax-preferred

to δ2, if

sup
θ∈Θ

R(θ, δ1) < sup
θ∈Θ

R(θ, δ2).
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If δM ∈ ∆ minimizes δ 7→ supθ R(θ, δ), i.e.

sup
θ∈Θ

R(θ, δM ) = inf
δ∈∆

sup
θ∈Θ

R(θ, δ). (2.27)

then δM is called a minimax decision-rule.

Regarding the existence of minimax decision rules, it is noted that the Minimax theorem

(see Strasser (1985) [81]) asserts existence of δM and moreover, that

inf
δ∈∆

sup
θ∈Θ

R(θ, δ) = sup
θ∈Θ

inf
δ∈∆

R(θ, δ).

under the conditions that R is convex on ∆, concave on Θ and that the topology on ∆ is

such that ∆ is compact, δ 7→ R(θ, δ) is continuous for all θ. Since many loss-functions used in

practice satisfy the convexity requirements, the Minimax theorem has broad applicability in

statistical decision theory and many other fields. In some cases, use of the minimax theorem

requires that we extend the class ∆ to contain more general decision rules. Particularly, it is

often necessary to consider the class of all so-called randomized decision rules. Randomized

decision rules are not only stochastic in the sense that they depend on the data, but also

through a further stochastic influence: concretely, this means that after realisation Y = y

of the data, uncertainty in the decision remains. To give a formal definition, consider a

measurable space (Ω,F ) with data Y : Ω→ Y and a decision rule δ : Ω→ A . The decision

rule δ is a randomized decision rule whenever σ(δ) is not a subset of σ(Y ), i.e. δ is not a

function of Y . An example of such a situation is that in which we entertain the possibility

of using one of two different non-randomized decision rules δ1, δ2 : Y → A . After the data

is realised as Y = y, δ1 and δ2 give rise to two decisions δ1(y), δ2(y), which may differ. In

that case, we flip a coin with outcome C ∈ {0, 1} to decide which decision to use. The extra

stochastic element introduced by the coin-flip has then “randomized” our decision rule. The

product space Y × {0, 1} endowed with the product σ-algebra may serve as the measurable

space (Ω,F ) with δ : Ω→ Y defined by,

(y, c) 7→ δ(y, c) = c δ1(Y ) + (1− c) δ2(y),

for all y ∈ Y and c ∈ {0, 1}. Perhaps a bit counterintuitively (but certainly in accordance

with the fact that minimization over a larger set produces a lower infimum), in some decision

problems the minimax risk associated with such randomized decision rules lies strictly below

the minimax risks of both non-randomized decision rules. We return to the Minimax theorem

in section 4.3.

Example 2.4.1. (Decision theoretic L2-estimation) The decision-theoretic approach can also

be used to formulate estimation problems in a generalized way, if we choose the decision space

A equal to the state-space Θ = R. Let Y ∼ N(θ0, 1) for some unknown θ0 ∈ Θ. Choose

L : Θ×A → R equal to the quadratic difference

L(θ, a) = (θ − a)2,
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a choice referred to as an L2-loss (or squared-error loss). Consider the decision-space

∆ = {δc : Y → A : δc(y) = c y, c ≥ 0}.

Note that ∆ plays the role of a family of estimators for θ0 here. The risk-function takes the

form:

R(θ, δc) =

∫
L(θ, δc(Y )) dPθ =

∫
R

(θ − cy)2dN(θ, 1)(y)

=

∫
R

(
c(θ − y) + (1− c)θ

)2
dN(θ, 1)(y)

=

∫
R

(
c2(y − θ)2 + 2c(1− c)θ(θ − y) + (1− c)2θ2

)
dN(θ, 1)(y)

= c2 + (1− c)2θ2.

It follows that δ1 is R-better than all δc for c > 1, so that for all c > 1, δc is inadmissible. If

we had restricted c to be greater than or equal to 1, δ1 would have been admissible. However,

since c may lie in [0, 1) as well, admissibility in the uniform sense of (2.26) does not apply to

any δc. To see this, note that R(θ, δ1) = 1 for all θ, whereas for c < 1 and some θ > c/(1− c),
R(0, δc) < 1 < R(θ, δc). Therefore, there is no admissible decision rule in ∆.

The minimax criterion does give rise to a preference. However, in order to guarantee its

existence, we need to bound (or rather, compactify) the parameter space: let M > 0 be given

and assume that Θ = [−M,M ]. The minimax risk for δc is given by

sup
θ∈Θ

R(θ, δc) = c2 + (1− c)2M2,

which is minimal iff c = M2/(1 + M2), i.e. the (unique) minimax decision rule for this

problem (or, since we are using decision theory to estimate a parameter in this case, the

minimax estimator with respect to L2-loss) is therefore,

δM (Y ) =
M2

1 +M2
Y.

Note that if we let M →∞, this estimator for θ converges to the MLE for said problem.

As demonstrated in the above example, uniform admissibility of a decision rule (c.f. (2.26))

is hard to achieve, but in many such cases a minimax decision rule does exist. One important

remark concerning the use the minimax decision principle remains: considering (2.27), we see

that the minimax principle chooses the decision rule that minimizes the maximum of the risk

R( · , δ) over Θ. As such, the minimax criterion takes into account only the worst-case scenario

and prefers decision rules that perform well under those conditions. In practical problems,

that means that the minimax principle tends to take a rather pessimistic perspective on

decision problems.

Bayesian decision theory presents a more balanced perspective because instead of maxi-

mizing the risk function over Θ, the Bayesian has the prior to integrate over Θ. Optimization
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of the resulting integral takes into account more than just the worst case, so that the resulting

decision rule is based on a less pessimistic perspective than the minimax decision rule.

Definition 2.4.6. Let the state-space Θ, states Pθ, (θ ∈ Θ), decision space A and loss

L be given. In addition, assume that Θ is a measurable space with σ-algebra G and prior

Π : G → R. The function

r(Π, δ) =

∫
Θ
R(θ, δ) dΠ(θ), (2.28)

is called the Bayesian risk function. Let δ1, δ2 ∈ ∆ be given. The decision rule δ1 is Bayes-

preferred to δ2, if

r(Π, δ1) < r(Π, δ2).

If δΠ ∈ ∆ minimizes δ 7→ r(Π, δ), i.e.

r(Π, δΠ) = inf
δ∈∆

r(Π, δ). (2.29)

then δΠ is called a Bayes rule. The quantity r(Π, δΠ) is called the Bayes risk.

Lemma 2.4.1. Let Y ∈ Y denote data in a decision theoretic problem with state space Θ,

decision space A and loss L : Θ×A → R. For any prior Π and all decision rules δ : Y → A ,

r(Π, δ) ≤ sup
θ∈Θ

R(θ, δ),

i.e. the Bayesian risk is always upper bounded by the minimax risk.

The proof of this lemma follows from the fact that the minimax risk is an upper bound

for the integrand in the Bayesian risk function.

Example 2.4.2. (continuation of example 2.4.1) Let Θ = R and Y ∼ N(θ0, 1) for some

unknown θ0 ∈ Θ. Choose the loss-function L : Θ × A → R and the decision space ∆ as in

example 2.4.1. We choose a prior Π = N(0, τ2) (for some τ > 0) on Θ. Then the Bayesian

risk function is give by:

r(Π, δc) =

∫
Θ
R(θ, δc) dΠ(θ) =

∫
R

(
c2 + (1− c)2θ2

)
dN(0, τ2)(θ)

= c2 + (1− c)2τ2,

which is minimal iff c = τ2/(1 + τ2). The (unique) Bayes rule for this problem and corre-

sponding Bayes risk are therefore,

δΠ(Y ) =
τ2

1 + τ2
Y, r(Π, δΠ) =

τ2

1 + τ2
.

In the Bayesian case, there is no need for a compact parameter space Θ, since we do not

maximize but integrate over Θ.
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In the above example, we could find the Bayes rule by straightforward optimization of the

Bayesian risk function, because the class ∆ was rather restricted. If we extend the class ∆ to

contain all non-randomized decision rules, the problem of finding the Bayes rule seems to be

far more complicated at first glance. However, as we shall see in theorem 2.4.1, the following

definition turns out to be the solution to this question.

Definition 2.4.7. (The conditional Bayes decision principle) Let the state-space Θ, states Pθ,

(θ ∈ Θ), decision space A and loss L be given. In addition, assume that Θ is a measurable

space with σ-algebra G and prior Π : G → R. We define the decision rule δ∗ : Y → A to be

such that for all y ∈ Y ,∫
Θ
L(θ, δ∗(y)) dΠ(θ|Y = y) = inf

a∈A

∫
Θ
L(θ, a) dΠ(θ|Y = y), (2.30)

i.e. point-wise for every y, the decision rule δ∗(y) minimizes the posterior expected loss.

The above defines the decision rule δ∗ implicitly as a point-wise minimizer, which raises

the usual questions concerning existence and uniqueness, of which little can be said in any

generality. However, if the existence of δ∗ is established, it is optimal.

Theorem 2.4.1. Let the state-space Θ, states Pθ, (θ ∈ Θ), decision space A and loss L be

given. In addition, assume that Θ is a measurable space with σ-algebra G and prior Π : G → R.

Assume that there exists a σ-finite measure µ : B → R such that Pθ � µ for all θ ∈ Θ. If the

decision rule δ∗ : Y → A is well-defined, then δ∗ is a Bayes rule.

Proof Denote the class of all decision rules for this problem by ∆ throughout the proof. We

start by rewriting the Bayesian risk function for a decision rule δ : Y → A .

r(Π, δ) =

∫
Θ
R(θ, δ) dΠ(θ) =

∫
Θ

∫
Y
L(θ, δ(y)) dPθ(y) dΠ(θ)

=

∫
Y

∫
Θ
L(θ, δ(y)) pθ(y) dΠ(θ) dµ(y)

=

∫
Y

(∫
Θ
pθ(y) dΠ(θ)

)∫
Θ
L(θ, δ(y)) dΠ(θ|Y = y) dµ(y).

where we use definitions (2.28) and (2.25), the Radon-Nikodym theorem (see theorem A.4.2),

Fubini’s theorem (see theorem A.4.1) and the definition of the posterior, c.f. (2.7). Using the

prior predictive distribution (2.9), we rewrite the Bayesian risk function further:

r(Π, δ) =

∫
Y

∫
Θ
L(θ, δ(y)) dΠ(θ|Y = y) dPΠ(y). (2.31)

By assumption, the conditional Bayes decision rule δ∗ exists. Since δ∗ satisfies (2.30) point-

wise for all y ∈ Y , we have∫
Θ
L(θ, δ∗(y)) dΠ(θ|Y = y) = inf

δ∈∆

∫
Θ
L(θ, δ(y)) dΠ(θ|Y = y).
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Substituting this in (2.31), we obtain

r(Π, δ∗) =

∫
Y

inf
δ∈∆

∫
Θ
L(θ, δ(y)) dΠ(θ|Y = y) dPΠ(y)

≤ inf
δ∈∆

∫
Y

∫
Θ
L(θ, δ(y)) dΠ(θ|Y = y) dPΠ(y)

= inf
δ∈∆

r(Π, δ).

which proves that δ∗ is a Bayes rule. �

To conclude, it is noted that randomization of the decision is not needed when optimizing

with respect to the Bayes risk. The conditional Bayes decision rule is non-randomized and

optimal.

Example 2.4.3. (Classification and Bayesian classifiers) Many decision-theoretic questions

take the form of a classification problem: under consideration is a population Ω of objects

that each belong to one of a finite number of classes A = {1, 2, . . . , L}. The class K of the

object is the unknown quantity of interest. Observing a vector Y of features of the object,

the goal is to classify the object, i.e. estimate which class it belongs to. We formalize the

problem in decision-theoretic terms: the population is a probability space (Ω,F , P ); both the

feature vector and the class of the object are random variables, Y : Ω → Y and K : Ω → A

respectively. The state-space in a classification problem equals the decision space A : the class

can be viewed as a “state” in the sense that the distribution PY |K=k of Y given the class

K = k depends on k. Based on the feature vector Y , we decide to classify in class δ(Y ),

i.e. the decision rule (or classifier, as it is usually referred to in the context of classification

problems) maps features to classes by means of a map δ : Y → A . A classifier δ can be

viewed equivalently as a finite partition of the feature-space Y : for every k ∈ A , we define

Yk = {y ∈ Y : δ(y) = k}

and note that if k 6= l, then Yk ∩ Yl = Ø and Y1 ∪ Y2 ∪ . . . ∪ YL = Y . The partition of the

feature space is such that if Y = y ∈ Yk for certain k ∈ A , then we classify the object in class

k.

Depending on the context of the classification problem, a loss-function L : A × A → R
is defined (see the examples in the introduction to this section, e.g. the example on medical

diagnosis). Without context, the loss function in a classification problem can be chosen as

follows

L(k, l) = 1{k 6=l}.

i.e. we incur a loss equal to one for each misclassification.

Using the minimax decision principle, we look for a classifier δM : Y → A that minimizes:

δ 7→ sup
k∈A

∫
Y
L(k, δ(y)) dP (y|K = k) = sup

k∈A
P
(
δ(Y ) 6= k

∣∣ K = k
)
,



Decision theory and classification 45

i.e. the minimax decision principle prescribes that we minimize the probability of misclassifi-

cation uniformly over all classes.

In a Bayesian context, we need a prior on the state-space, which equals A in classification

problems. Note that if known (or estimable), the marginal probability distribution for K is to

be used as the prior for the state k, in accordance with definition 2.1.1. In practical problems,

frequencies of occurrence for the classes {1, . . . , L} in Ω are often available or easily estimable;

in the absence of information on the marginal distribution of K equal prior weights can be

assigned. Here, we assume that the probabilities P (K = k) are known and use them to define

the prior density with respect to the counting measure on the (finite) space A :

π(k) = P (K = k).

The Bayes rule δ∗ : Y → A for this classification problem is defined to as the minimizer of

δ 7→
∫

A
L(k, δ(y)) dΠ(k|Y = y) =

L∑
k=1

Π
(
δ(y) 6= K

∣∣ Y = y
)

for every y ∈ Y . According to theorem 2.4.1, the classifier δ∗ minimizes the Bayes risk, which

in this situation is given by:

r(Π, δ) =

∫
A
R(k, δ) dΠ(θ) =

∑
k∈A

∫
Y
L(k, δ(y)) dP (y|K = k)π(k)

=
∑
k∈A

P
(
k 6= δ(Y )

∣∣ K = k
)
P (K = k) = P

(
K 6= δ(Y )

)
.

Summarizing, the Bayes rule δ∗ minimizes the overall probability of misclassification, i.e.

without referring to the class of the object. (Compare this with the minimax classifier.)

Readers interested in the statistics of classification and its applications are encouraged to

read B. Ripley’s “Pattern recognition and neural networks” (1996) [73].

To close the chapter, the following remark is in order: when we started our comparison of

frequentist and Bayesian methods, we highlighted the conflict in philosophy. However, now

that we have seen some of the differences in more detail by considering estimation, testing

and decision theory in both schools, we can be far more specific. Statistical problems can be

solved in both schools; whether one chooses for a Bayesian or frequentist solution is usually not

determined by adamant belief in either philosophy, but by much more practical considerations.

Perhaps example 2.4.3 illustrates this point most clearly: if one is concerned about correct

classification for objects in the most difficult class, one should opt for the minimax decision

rule. If, on the other hand, one wants to minimize the overall misclassification probability

(disregarding misclassification per class), one should choose to adopt the conditional Bayes

decision rule. In other words, depending on the risk to be minimized (minimax risk and Bayes

risk are different!) one arrives at different classifiers. Some formulations are more natural in

frequentist context and others belong in the Bayesian realm. Similarly, practicality may form

an argument in favour of imposing a (possibly subjective) bias (see example 1.2.1). Bayesian
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methods are a natural choice in such cases, due to the intrinsic bias priors express. For

example, forensic statistics is usually performed using Bayesian methods, in order to leave

room for common-sense bias. Another reason to use one or the other may be computational

advantages or useful theoretical results that exist for one school but have no analog in the

other.

Philosophical preference should not play a role in the choice for a statistical procedure,

practicality should (and usually does).

2.5 Exercises

Exercise 2.1. Calibration

A physicist prepares for repreated measurement of a physical quantity Z in his laboratory.

To that end, he installs a measurement apparatus that will give him outcomes of the form

Y = Z + e where e is a measurement error due to the inaccuracy of the apparatus, assumed

to be stochastically independent of Z. Note that if the expectation of e equals zero, long-run

sample averages converge to the expectation of Z; if Pe 6= 0, on the other hand, averaging

does not cancel out the resulting bias.

The manufacturer of the apparatus says that e is normally distributed with known variance

σ2 > 0. The mean θ of this normal distribution depends on the way the apparatus is installed

and thus requires calibration. The following questions pertain to the calibration procedure.

The physicist decides to conduct the following steps to calibrate his measurement: if he

makes certain that the apparatus receives no input signal, Z = 0. A sample of n independent

measurements of Y then amounts to an i.i.d. sample from the distribution of e, which can be

used to estimate the unknown mean θ. The physicist expects that Ee lies close to zero.

a. Explain why, from a subjectivist point of view, the choice θ ∼ N(0, τ2) forms a suitable

prior in this situation. Explain the role of the parameter τ2 > 0.

b. With the choice of prior as in part a., calculate the posterior density for θ.

c. Interpret the influence of τ2 on the posterior, taking into account your answer under

part a. (Hint: take limits τ2 ↓ 0 and τ2 ↑ ∞ in the expression you have found under b.)

d. What is the influence of the samplesize n? Show that the particular choice of the constant

τ2 becomes irrelevant in the large-sample limit n→∞.

Exercise 2.2. Let X1, . . . , Xn be an i.i.d. sample from the normal distribution N(0, σ2), with

unknown variance σ2 > 0. As a prior for σ2, let 1/σ2 ∼ Γ(1, 2). Calculate the posterior

distribution for σ2 with respect to the Lebesgue measure on (0,∞).

Exercise 2.3. Let X1, . . . , Xn be an i.i.d. sample from the Poisson distribution Poisson(λ),

with unknown parameter λ > 0. As a prior for λ, let λ ∼ Γ(2, 1). Calculate the posterior

density for λ with respect to the Lebesgue measure on (0,∞).
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Exercise 2.4. Let the measurement Y ∼ P0 be given. Assume that the model P = {Pθ : θ ∈
Θ} is dominated but possibly misspecified. Let Π denote a prior distribution on Θ. Show that

the posterior distribution is P0-almost-surely equal to the prior distribution iff the likelihood

is Π × P0-almost-surely constant (as a function of (θ, y) ∈ Θ × Y ). Explain the result of

example 2.1.1 in this context.

Exercise 2.5. Consider the following questions in the context of exercise 2.3.

a. Calculate the maximum-likelihood estimator and the maximum-a-posteriori estimator

for λ ∈ (0,∞).

b. Let n → ∞ both in the MLE and MAP estimator and conclude that the difference

vanishes in the limit.

c. Following remark 2.2.7, explain the difference between ML and MAP estimators exclu-

sively in terms of the prior.

d. Consider and discuss the choice of prior λ ∼ Γ(2, 1) twice, once in a qualitative, sub-

jectivist Bayesian fashion, and once following the frequentist interpretation of the log-

prior-density.

Exercise 2.6. Let Y ∼ P0 denote the data. The following questions pertain to the small-ball

estimator defined in remark 2.2.5 for certain, fixed p ∈ (1/2, 1), which we shall denote by

P̂ (Y ). Assume that the model P is compact in the topology induced by the metric d.

a. Show that for any two measurable model subsets A,B ⊂P,∣∣Π(A |Y )−Π(B |Y )
∣∣ ≤ Π(A ∪B |Y )−Π(A ∩B |Y ),

P0-almost-surely.

b. Prove that the map (ε, P ) 7→ Π(Bd(P, ε) |Y ) is continuous, P0-almost-surely.

c. Show that P̂ (Y ) exists, P0-almost-surely.

d. Suppose that ε > 0 denotes the smallest radius for which there exists a ball Bd(P, ε) ⊂P

of posterior probability greater than or equal to p. Show that, if both P̂1(Y ) and P̂2(Y )

are centre points of such balls, then d(P̂1(Y ), P̂2(Y )) < 2ε, P0-almost-surely.

Exercise 2.7. Complete the proof of lemma 2.1.2. (Hint: Denote S = supp(Π); assume that

Π(S) = π < 1; show that Π(Sc ∩ C) = 1 − π for any closed C such that Π(C) = 1; then use

that intersections of closed sets are closed.

Exercise 2.8. Let Y be normally distributed with known variance σ2 > 0 and unknown

location θ. As a prior for θ, choose Π = N(0, τ2). Let α ∈ (0, 1) be given. Using the posterior

density with respect to the Lebesgue measure, express the level-α HPD-credible set in terms of

Y , σ2, τ2 and quantiles of the standard normal distribution. Consider the limit τ2 →∞ and

compare with level-α confidence intervals centred on the ML estimate for θ.
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Exercise 2.9. Let Y ∼ Bin(n; p) for known n ≥ 1 and unknown p ∈ (0, 1). As a prior for

p, choose Π = Beta(1
2 ,

1
2). Calculate the posterior distribution for the parameter p. Using

the Lebesgue measure on (0, 1) to define the posterior density, give the level-α HPD-credible

interval for p in terms of Y , n and the quantiles of beta-distributions.

Exercise 2.10. Consider a dominated model P = {Pθ : θ ∈ Θ} for data Y , where Θ ⊂ R is

an interval. For certain θ0 ∈ Θ, consider the simple null-hypothesis and alternative:

H0 : θ = θ0, H1 : θ 6= θ0.

Show that if the prior Π is absolutely continuous with respect to the Lebesgue measure on Θ,

then the Bayes factor B for the hypotheses H0 versus H1 satisfies B = 0.

Interpret this fact as follows: calculation of Bayes factors (and posterior/prior odds ratios)

makes sense only if both hypotheses receive non-zero prior mass. Otherwise, the statistical

question we ask is rendered invalid ex ante by our beliefs concerning θ, as formulated through

the choice of the prior.

Exercise 2.11. Prisoner’s dilemma

Two men have been arrested on the suspicion of burglary and are held in separate cells awaiting

interrogation. The prisoners have been told that burglary carries a maximum sentence of x

years. However, if they confess, their prison terms are reduced to y years (where 0 < y < x).

If one of them confesses and the other does not, the first receives a sentence of y years while

the other is sentenced to x years.

Guilty of the crime he is accused of, our prisoner contemplates whether to confess to

receive a lower sentence, or to deny involvement in the hope of escaping justice altogether.

He cannot confess without implicating the other prisoner. If he keeps his mouth shut and so

does his partner in crime, they will both walk away free. If he keeps his mouth shut but his

partner talks, he gets the maximum sentence. If he talks, he will always receive a sentence of

y years and the other prisoner receives y or x years depending on whether he confessed or not

himself. To talk or not to talk, that is the question.

There is no data in this problem, so we set θ equal to 1 or 0, depending on whether the

other prisoner talks or not. Our prisoner can decide to talk (t = 1) or not (t = 0). The loss

function L(θ, t) equals the prison term for our prisoner. In the absence of data, risk and loss

are equal.

a. Calculate the minimax risk for both t = 0 and t = 1. Argue that the minimax-optimal

decision for our prisoner is to confess.

As argued in section 2.4, the minimax decision can be overly pessimistic. In the above, it

assumes that the other prisoner will talk and chooses t accordingly.

The Bayesian perspective balances matters depending on the chance that the other prisoner

will confess when interrogated. This chance finds its way into the formalism as a prior for the

trustworthiness of the other prisoner. Let p ∈ [0, 1] be the probability that the other prisoner

confesses, i.e. Π(θ = 1) = p and Π(θ = 0) = 1− p.
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b. Calculate the Bayes risks for t = 0 and t = 1 in terms of x, y and p. Argue that the

Bayes decision rule for our prisoner is as follows: if y/x > p then our prisoner does

not confess, if y/x < p, the prisoner confesses. If y/x = p, the Bayes decision criterion

does not have a preference.

So, depending on the degree to which our prisoner trusts his associate and the ratio of prison

terms, the Bayesian draws his conclusion. The latter is certainly more sophisticated and

perhaps more realistic, but it requires that our prisoner quantifies his trust in his partner in

the form of a prior Bernoulli(p) distribution.





Chapter 3

Choice of the prior

Bayesian procedures have been the object of much criticism, often focusing on the choice of

the prior as an undesirable source of ambiguity. The answer of the subjectivist that the prior

represents the “belief” of the statistician or “expert knowledge” pertaining to the measure-

ment elevates this ambiguity to a matter of principle, thus setting the stage for a heated

debate between “pure” Bayesians and “pure” frequentists concerning the philosophical merits

of either school within statistics. As said, the issue is complicated further by the fact that

the Bayesian procedure does not refer to the “true” distribution P0 for the observation (see

section 2.1), providing another point of fundamental philosophical disagreement for the fa-

natically pure to lock horns over. Leaving the philosophical argumentation to others, we shall

try to discuss the choice of a prior at a more conventional, practical level.

In this chapter, we look at the choice of the prior from various points of view: in sec-

tion 3.1, we consider the priors that emphasize the subjectivist’s prior “belief”. In section 3.2

we construct priors with the express purpose not to emphasize any part of the model, as

advocated by objectivist Bayesians. Because it is often desirable to control properties of the

posterior distribution and be able to compare it to the prior, conjugate priors are considered

in section 3.3. As will become clear in the course of the chapter, the choice of a “good” prior

is also highly dependent on the model under consideration.

Since the Bayesian school has taken up an interest in non-parametric statistics only rel-

atively recently, most (if not all) of the material presented in the first three sections of this

chapter applies only to parametric models. To find a suitable prior for a non-parametric

model can be surprisingly complicated. Not only does the formulation involve topological

aspects that do not play a role in parametric models, but also the properties of the poste-

rior may be surprisingly different from those encountered in parametric models! Priors on

infinite-dimensional models are considered in section 3.4.

51
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3.1 Subjective and objective priors

As was explained in chapters 1 and 2, all statistical procedures require the statistician to

make certain choices, e.g. for model and method of inference. The subjectivist chooses the

model as a collection of stochastic explanations of the data that he finds “reasonable”, based

on criteria no different from those frequentists and objectivist Bayesians would use.

Bayesians then proceed to choose a prior, preferably such that the support of this prior

is not essentially smaller than the model itself. But even when the support of the prior is

fixed, there is a large collection of possible priors left to be considered, each leading to a

different posterior distribution. The objectivist Bayesian will choose from those possibilities a

prior that is “homogeneous” (in a suitable sense), in the hope of achieving unbiased inference.

The subjectivist, however, chooses his prior such as to emphasize parts of the model that

he believes in stronger than others, thereby introducing a bias in his inferential procedure

explicitly. Such a prior is called a subjective prior, or informative prior. The reason for this

approach is best explained by examples like 1.2.1, which demonstrate that intuitive statistical

reasoning is not free of bias either.

Subjectivity finds its mathematical expression when high prior “belief” is translated into

“relatively large” amounts of assigned prior mass to certain regions of the model. However,

there is no clear rule directing the exact fashion in which prior mass is to be distributed.

From a mathematical perspective, this is a rather serious shortcoming, because it leaves us

without a precise definition of the subjectivist approach. Often, the subjectivist will have a

reasonably precise idea about his “beliefs” at the roughest level (e.g. concerning partitions of

the model into a few subsets), but none at more detailed levels. When the parameter space

Θ is unbounded this lack of detail becomes acute, given that the tail of the prior is hard

to fix by subjective reasoning, yet highly influential for the inferential conclusions based on

it. In practice, a subjectivist will often choose his prior without mathematical precision. He

considers the problem, interprets the parameters in his model and chooses a prior to reflect

all the (background) information at his disposition, ultimately filling in remaining details in

an ad-hoc manner. It is worthwhile to mention that studies have been conducted focused on

the ability of people to make a realistic guess at a probability distribution: they have shown

that without specific training or practice, people tend to be overconfident in their assessment,

assigning too much mass to possibilities they deem most likely and too little to others [1]. A

tentative conclusion might be, that people tend to formulate their “beliefs” on a deterministic

basis and deviate from that point of view only slightly (or, too little) when asked to give a

realistic assessment of the probabilistic perspective. (For more concerning the intricacies of

chosing subjective prior distributions, see Berger (1985) [8].)

Remark 3.1.1. For this reason, it is imperative that a subjectivist prior is always reported

alongside inferential conclusions based upon it! Reporting methods is important in any statis-

tical setting, but if chosen methods lead to express bias, explanation is even more important.

Indeed, not only the prior but also the reasoning leading to its choice should be reported, be-
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cause in a subjectivist setting, the motivation for the choice of a certain prior (and not any

other) is part of the analysis rather than an external consideration.

If the model Θ is one-dimensional and the parameter θ has a clear interpretation, it is

often not exceedingly difficult to find a reasonable prior Π expressing the subjectivist’s “belief”

concerning the value of θ.

Example 3.1.1. If one measures the speed of light in vacuo c (a physical constant, approxi-

mately equal to 299792458 m/s), the experiment will be subject to random perturbations outside

the control of the experimenter. For example, imperfection of the vacuum in the experimental

equipment, small errors in timing devices, electronic noise and countless other factors may

influence the resulting measured speed Y . We model the perturbations collectively as a nor-

mally distributed error e ∼ N(0, σ2) where σ is known as a characteristic of the experimental

setup. The measured speed is modelled as Y = c+ e, i.e. the model P = {N(c, σ2) : c > 0} is

used to infer on c. Based on experiments in the past (most famous is the Michelson-Morley

experiment (1887)), the experimenter knows that c has a value close to 3 · 108 m/s, so he

chooses his prior to reflect this: a normal distribution located at 300000000 m/s with a stan-

dard deviation of (say) 1000000 m/s will do. The latter choice is arbitrary, just like the choice

for a normal location model over other families.

The situation changes when the parameter has a higher dimension, Θ ⊂ Rd: first of all,

interpretability of each of the d components of θ = (θ1, θ2, . . . , θd) can be from straightforward,

so that concepts like prior “belief” or “expert knowledge” become inadequate guidelines for

the choice of a prior. Additionally, the choice for a prior in higher-dimensional models also

involves choices concerning the dependence structure between parameters!

Remark 3.1.2. Often, subjectivist inference employs exceedingly simple, parametric models

for the sake of interpretability of the parameter (and to be able to choose a prior accordingly).

Most frequentists would object to such choices for their obvious lack of realism, since they

view the data as being generated by a “true, underlying distribution”, usually assumed to be

an element of the model. However, the subjectivist philosophy does not involve the ambition

to be strictly realistic and calls for interpretability instead: to the subjectivist, inference is

a personal rather than a universal matter. As such, the preference for simple parametric

models is a matter of subjective interpretation rather than an assumption concerning reality

or realistic distributions for the data.

When confronted with the question which subjective prior to use on a higher-dimensional

model, it is often of help to define the prior in several steps based on a choice for the dependence

structure between various components of the parameter. Suppose that the subjectivist can

imagine a reasonable distribution F for the first component θ1, if he has definite values for

all other components θ2, . . . , θd. This F is then none other than the (subjectivist prior)
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distribution of θ1, given θ2, . . . , θd,

F = Πθ1|θ2,...,θd .

Suppose, furthermore, that a reasonable subjective prior G for the second component may be

found, independent of θ1, but given θ3, . . . , θd. Then,

G = Πθ2|θ3,...,θd .

If we continue like this, eventually defining the marginal prior for the last component θd, we

have found a prior for the full parameter θ, because for all A1, . . . , Ad ∈ B,

Π(θ1 ∈ A1, . . . , θd ∈ Ad) = Π(θ1 ∈ A1|θ2 ∈ A2, . . . , θd ∈ Ad) Π(θ2 ∈ A2|θ3 ∈ A3, . . . , θd ∈ Ad)

× . . .×Π(θd−1 ∈ Ad−1|θd ∈ Ad) Π(θd ∈ Ad).

Because prior beliefs may be more easily expressed when imagining a situation where other

parameters have fixed values, one eventually succeeds in defining the prior for the high-

dimensional model. The construction indicated here is that of a so-called hyperprior, which we

shall revisit section 3.3. Note that when doing this, it is important to choose the parametriza-

tion of the model such that one may assume (with some plausibility), that θi is independent

of (θ1, . . . , θi−1), given (θi+1, . . . , θd), for all i ≥ 1.

In certain situations, the subjectivist has more factual information at his disposal when

defining the prior for his analysis. In particular, if a probability distribution on the model

reflecting the subjectivist’s “beliefs” can be found by other statistical means, it can be used

as a prior. Suppose the statistician is planning to measure a quantity Y and infer on a model

P; suppose also that this experiment repeats or extends an earlier analysis. From the earlier

analysis, the statistician may have obtained a posterior distribution on P. For the new

experiment, this posterior may serve as a prior.

Example 3.1.2. Let Θ → P : θ 7→ Pθ be a parametrized model for an i.i.d. sample

X1, X2, . . . , Xn with prior measure Π1 : G → [0, 1]. Let the model be dominated (see def-

inition 1.1.3), so that the posterior Π1( · |X1, . . . , Xn) satisfies (2.8). Suppose that this ex-

periment has been conducted, with the sample realised as (X1, X2, . . . , Xn) = (x1, x2, . . . , xn).

Next, consider a new, independent experiment in which a quantity Xn+1 is measured (with

the same model). As a prior Π2 for the new experiment, we use the (realised) posterior of the

earlier experiment, i.e. for all G ∈ G ,

Π2(G) = Π1(G |X1 = x1, . . . , Xn = xn).
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The posterior for the second experiment then satisfies:

dΠ2(θ|Xn+1) =
pθ(Xn+1) dΠ2(θ|X1 = x1, . . . , Xn = xn)∫
Θ
pθ(Xn+1) dΠ2(θ|X1 = x1, . . . , Xn = xn)

=

pθ(Xn+1)
n∏
i=1

pθ(xi)dΠ1(θ)

∫
Θ
pθ(Xn+1)

n∏
j=1

pθ(xj) dΠ1(θ)

(3.1)

The latter form is comparable to the posterior that would have been obtained if we had con-

ducted a single experiment with an i.i.d. sample X1, X2, . . . , Xn+1 of size n+ 1 and prior Π1.

In that case, the posterior would have been of the form:

Π( · |X1, . . . , Xn+1) =

n+1∏
i=1

pθ(Xi) dΠ1(θ)

∫
Θ

n+1∏
j=1

pθ(Xj) dΠ1(θ)

, (3.2)

i.e. the only difference is the fact that the posterior Π1( · |X1 = x1, . . . , Xn = xn) is realised.

As such, we may interpret independent consecutive experiments as a single, interrupted ex-

periment and the posterior Π1( · |X1, . . . , Xn) can be viewed as an intermediate result.

Remark 3.1.3. Note that it is necessary to assume that the second experiment is stochastically

independent of the first, in order to enable comparison between (3.1) and (3.2).

Clearly, there are other ways to obtain a distribution on the model that can be used as

an informative prior. One example is the distribution that is obtained when a previously

obtained frequentist estimator θ̂ for θ is subject to a procedure called the bootstrap. Although

the bootstrap gives rise to a distribution that is interpreted (in the frequentist sense) as the

distribution of the estimator θ̂ rather than θ itself, a subjectivist may reason that the estimator

provides him with the “expert knowledge” on θ that he needs to define a prior on Θ. (For

more on bootstrap methods, see Efron and Tibshirani (1993) [32].)

3.2 Non-informative priors

Objectivist Bayesians argee with frequentists that the “beliefs” of the statistician analyzing

a given measurement should play a minimal role in the methodology. Obviously, the model

choice already introduces a bias, but rather than embrace this necessity and expand upon

it like subjectivists do, they seek to keep the remainder of the procedure unbiased. In par-

ticular, they aim to use priors that do not introduce additional information (in the form

of prior “belief”) in the procedure. Subjectivists introduce their “belief” by concentrating

prior mass in certain regions of the model; correspondingly, objectivists prefer priors that are

“homogeneous” in an appropriate sense.
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At first glance, one may be inclined to argue that a prior is objective (or non-informative)

if it is uniform over the parameter space: if we are inferring on parameter θ ∈ [−1, 1] and we

do not want to favour any part of the model over any other, we would choose a prior of the

form, (A ∈ B),

Π(A) = 1
2µ(A), (3.3)

where µ denotes the Lebesgue measure on [−1, 1]. Attempts to minimize the amount of

subjectivity introduced by the prior therefore focus on uniformity (argumentation that departs

from the Shannon entropy in discrete probability spaces reaches the same conclusion (see, for

example, Ghosh and Ramamoorthi (2003) [42], p. 47)). The original references on Bayesian

methods (e.g. Bayes (1763) [4], Laplace (1774) [57]) use uniform priors as well. But there

are several problems with this approach: first of all, one must wonder how to extend such

reasoning when θ ∈ R (or any other unbounded subset of R). In that case, µ(Θ) = ∞ and

we can not normalize Π to be a probability measure! Any attempt to extend Π to such

unbounded models as a probability measure (or even as a finite measure) would eventually

lead to inhomogeneity, i.e. go at the expense of the unbiasedness of the procedure.

The compromise some objectivists are willing to make, is to relinquish the interpretation

that subjectivists give to the prior: they do not express any prior “degree of belief” in A ∈ G

through the subjectivist statement that the (prior) probability of finding ϑ ∈ A equals Π(A).

Although they maintain the Bayesian interpretation of the posterior, they view the prior as

a mathematical definition rather than a philosophical concept. Then, the following definition

can be made without further reservations.

Definition 3.2.1. Given a model (Θ,G ), a prior measure Π : G → R̄ such that Π(Θ) = ∞
is called an improper prior.

Note that the normalization factor 1
2 in (3.3) cancels in the expression for the posterior,

c.f. (2.4): any finite multiple of a (finite) prior is equivalent to the original prior as far as

the posterior is concerned. However, this argument does not extend to the improper case:

integrability problems or other infinities may ruin the procedure, even to the point where the

posterior measure becomes infinite or ill-defined. So not just the philosophical foundation

of the Bayesian approach is lost, mathematical integrity of the procedure can no longer be

guaranteed either! When confronted with an improper prior, the entire procedure must be

checked for potential problems. In particular, one must verify that the posterior is a well-

defined probability measure.

Remark 3.2.1. Throughout these notes, whenever we refer to a prior measure, it is implied

that this measure is a probability measure unless stated otherwise.

But even if one is willing to accept that objectivity of the prior requires that we restrict

attention to models on which “uniform” probability measures exist (e.g. with Θ a bounded

subset of Rd), a more fundamental problem exists: the very notion of uniformity is dependent

on the parametrization of the model! To see this we look at a model that can be parametrized
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in two ways and we consider the way in which uniformity as seen in one parametrization man-

ifests itself in the other parametrization. Suppose that we have a d-dimensional parametric

model P with two different parametrizations, on Θ1 ⊂ Rd and Θ2 ⊂ Rd respectively,

φ1 : Θ1 →P, φ2 : Θ2 →P (3.4)

both of which are bijective. Assume that P has a topology and is endowed with the corre-

sponding Borel σ-algebra G ; let φ1 and φ2 be continuous and assume that their inverses φ−1
1

and φ−1
2 are continuous as well. Assuming that Θ1 is bounded, we consider the uniform prior

Π1 on Θ1, i.e. the normalized Lebesgue measure on Θ1, i.e. for all A ∈ B1,

Π1(A) = µ(Θ1)−1µ(A),

This induces a prior Π′1 on P: for all B ∈ G ,

Π′1(B) = (Π1 ◦ φ−1
1 )(B). (3.5)

In turn, this induces a prior Π′′1 on Θ2: for all C ∈ B2,

Π′′1(C) = (Π′1 ◦ (φ−1
2 )−1)(C) = (Π′1 ◦ φ2)(C) =

(
Π1 ◦ (φ−1

1 ◦ φ2)
)
(C).

Even though Π1 is uniform, generically Π′′1 is not, because, effectively, we are mapping (a

subset of) Rd to Rd by φ−1
2 ◦φ1 : Θ1 → Θ2. (Such re-coordinatizations are used extensively in

differential geometry, where a manifold can be parametrized in various ways by sets of maps

called charts.)

Example 3.2.1. Consider the model P of all normal distributions centred on the origin with

unknown variance between 0 and 1. We may parametrize this model in many different ways,

but we consider only the following two:

φ1 : (0, 1)→P : τ 7→ N(0, τ), φ2 : (0, 1)→P : σ 7→ N(0, σ2). (3.6)

Although used more commonly than φ1, parametrization φ2 is not special in any sense: both

parametrizations describe exactly the same model. Now, suppose that we choose to endow the

first parametrization with a uniform prior Π1, equal to the Lebesgue measure µ on (0, 1). By

(3.5), this induces a prior on P. Let us now see what this prior looks like if we consider P

parametrized by σ: for any constant C ∈ (0, 1) the point N(0, C) in P is the image of τ = C

and σ =
√
C, so the relation between τ and corresponding σ is given by

τ(σ) = (φ−1
2 ◦ φ1)(σ) = σ2.

Since Π1 equals the Lebesgue measure, we find that the density of Π′′1 with respect to the

Lebesgue measure equals:

π′′1(σ) = π1(τ(σ))
dτ

dσ
(σ) = 2σ.

This density is non-constant and we see that Π′′1 is non-uniform. In a subjectivist sense, the

prior Π′′1 places higher prior “belief” on values of σ close to 1 than on values close to 0.
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From the above argument and example 3.2.1, we see that uniformity of the prior is en-

tirely dependent on the parametrization: what we call “uniform” in one parametrization,

may be highly non-uniform in another. Consequently, what is deemed “objective” in one

parametrization may turn out to be highly subjective in another.

What matters is the model P, not its parametrization in terms of one parameter or

another! The parametrization is a mere choice made by the statistician analyzing the problem.

Therefore, any statistical concept that depends on the parametrization is flawed from the

outset. Through P and only through P do the parameters σ and τ have any bearing on

(the law of) the observation in example 3.2.1. If we could define what is meant by uniformity

on the model P itself, instead of on its parametrizing spaces, one would obtain a viable way

to formalize objectivity. But spaces of probability measures do not have an intrinsic notion

of uniformity (like translation-invariance of Lebesgue measure on Rd, or more generally, left-

invariance of the Haar measure on locally compact topological groups).

Once it is clear that uniformity on any parametrizing space does not have intrinsic meaning

in the model P, the very definition of objectivity in terms of uniformity of the prior is void. A

subjectivist can use any parametrization to formulate his prejudice (note that the subjectivist

uses relative prior weights rather than deviations from uniformity to express his prior “belief”),

but an objectivist has to define his notion of “objectivity” regardless of the parametrization

used. Therefore, the emphasis is shifted: instead of looking for uniform priors, we look for

priors that are well-defined on P and declare them objective. For differentiable parametric

models, a construction from Riemannian geometry can be used to define a parameterisation-

independent prior (see Jeffreys (1946), (1961) [46, 47]) if we interpret the Fisher information

as a Riemannian metric on the model (as first proposed by Rao (1945) [71] and extended

by Efron (1975) [31]; for an overview, see Amari (1990) [2]) and use the square-root of its

determinant as a density with respect to the Lebesgue measure.

Definition 3.2.2. Let Θ ⊂ R be open and let Θ → P define a differentiable, parametric,

dominated model. Assume that for every θ ∈ Θ, the score-function ˙̀
θ is twice integrable with

respect to Pθ. Then Jeffreys prior Π has the square root of the determinant of the Fisher

information Iθ = Pθ ˙̀
θ

˙̀T
θ as its density with respect to the Lebesgue measure on Θ:

dΠ(θ) =
√

det(Iθ) dθ. (3.7)

Although the expression for Jeffreys prior has the appearance of being parametrization-

dependent, the form (3.7) of this prior is the same in any parametrization (a property referred

to sometimes as (coordinate-)covariance). In other words, no matter which parametrization

we use to calculate Π in (c.f. (3.7)), the induced measure Π′ on P is always the same one.

As such, Jeffreys prior is a measure defined on P rather than a parametrization-dependent

measure.

Example 3.2.2. We calculate the density of Jeffreys prior in the normal model of exam-

ple 3.2.1. The score-function with respect to the parameter σ in parametrization φ2 of P is
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given by:

˙̀
σ(X) =

1

σ

(X2

σ2
− 1
)
.

The Fisher information (which is a 1× 1-maxtrix in this case), is then given by:

Iσ = Pσ ˙̀
σ

˙̀
σ =

1

σ2
Pσ

(X2

σ2
− 1
)2

=
2

σ2

Therefore, the density for Jeffries prior Π takes the form

dΠ(σ) =

√
2

σ
dσ,

for all σ ∈ Θ2 = (0, 1). A similar calculation using the parametrization φ1 shows that, in

terms of the parameter τ , Jeffries prior takes the form:

dΠ(τ) =
1√
2τ

dτ,

for all τ ∈ Θ1 = (0, 1). That both densities give rise to the same measure on P is the

assertion of the following lemma.

Lemma 3.2.1. (Parameterization-independence of Jeffreys prior)

Consider the situation of (3.4) and assume that the parametrizations φ1 and φ2 satisfy the

conditions of definition 3.2.2. In addition, we require that the map φ−1
1 ◦ φ2 : Θ2 → Θ1 is

differentiable. Then the densities (3.7), calculated in coordinates φ1 and φ2 induce the same

measure on P, Jeffreys prior.

Proof Since the Fisher information can be written as:

Iθ1 = Pθ1( ˙̀
θ1

˙̀T
θ1),

and the score ˙̀
θ1(X) is defined as the derivative of θ1 7→ log pθ1(X) with respect to θ1, a

change of parametrization θ1(θ2) = (φ−1
1 ◦ φ2)(θ2) induces a transformation of the form

Iθ2 = S1,2(θ2) Iθ1(θ2) S1,2(θ2)T ,

on the Fisher information matrix, where S1,2(θ2) is the total derivative matrix of θ2 7→ θ1(θ2)

in the point θ2 of the model. Therefore,√
det Iθ2 dθ2 =

√
det(S1,2(θ2) Iθ1(θ2) S1,2(θ2)T ) dθ2 =

√
det(S1,2(θ2))2

√
det(Iθ1(θ2)) dθ2

=
√

det(Iθ1(θ2))
∣∣det(S1,2(θ2))

∣∣ dθ2 =
√

det(Iθ1) dθ1

i.e. the form of the density is such that reparametrization leads exactly to the Jacobian for

the transformation of dθ2 to dθ1. �

Ultimately, the above construction derives from the fact that the Fisher information Iθ (or

in fact, any other positive-definite symmetric matrix-valued function on the model, e.g. the

Hessian of a twice-differentiable, convex function) can be viewed as a Riemann metric on the

“manifold” P. The construction of a measure with Lebesgue density (3.7) is then a standard

construction in differential geometry.
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Example 3.2.3. To continue with the normal model of examples 3.2.1 and 3.2.2, we note

that σ(τ) =
√
τ , so that dσ/dτ(τ) = 1/2

√
τ . As a result,

√
det Iθ2 dθ2 =

√
2

σ
dσ =

√
2

σ(τ)

dσ

dτ
(τ) dτ =

√
2√
τ

1

2
√
τ
dτ =

1√
2τ

dτ =
√

det(Iθ1) dθ1,

which verifies the assertion of lemma 3.2.1 explicitly.

Other constructions and criteria for the construction of non-informative priors exist: cur-

rently very popular is the use of so-called reference priors, as introduced in Lindley (1956)

[65] and rediscovered in Bernardo (1979) [12] (see also Berger and Bernardo (1992) [9]). By

defining principle, a reference prior is required to maximize the Kullback-Leibler divergence

between prior and posterior. To motivate this condition, we have to look at information the-

ory, from which the Kullback-Leibler divergence has emerged as one (popular but by no means

unique) way to quantify the notion of the “amount of information” contained in a probability

distribution. Sometimes called the Shannon entropy, the Kullback-Leibler divergence of a

distribution P with respect to the counting measure in discrete probability spaces,

S(P ) =
∑
ω∈Ω

p(ω) log(p(ω)),

can be presented as such convincingly (see Bolzmann (1895, 1898) [22], Shannon (1948) [78]).

For lack of a default dominating measure, the argument does not extend formally to contin-

uous probability spaces but is generalized nevertheless. A reference prior Π on a dominated,

parametrized model Θ → P : θ 7→ Pθ for an observation Y is to be chosen such that the

Lindley entropy,

SL =

∫ ∫
log
(π(θ|Y = y)

π(θ)

)
dΠ(θ|Y = y) dPΠ(y),

is maximized. Note that this definition does not depend on the specific parametrization, since

the defining property is parametrization independent. Usually, the derivation of a reference

prior [12] is performed in the limit where the posterior becomes asymptotically normal, c.f.

theorem 4.4.1. Jeffreys prior emerges as a special case of a reference prior.

For an overview of various objective methods of constructing priors, the reader is referred

to Kass and Wasserman (1995) [49]. When using non-informative priors, however, the follow-

ing general warning should be heeded

Remark 3.2.2. In many models, non-informative priors, including Jeffries prior and refer-

ence priors, are improper.

3.3 Conjugate families, hierarchical and empirical Bayes

Consider again the problem of estimating the mean of a single, normally distributed observa-

tion Y with known variance. The model consists of all normal distributions Pθ = N(θ, σ2),

where θ ∈ R is unknown and σ2 > 0 is known. Imposing a normal prior on the parameter θ,
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Π = N(0, τ2), for some choice of τ2 > 0, we easily calculate that posterior distribution is a

normal distribution,

Π(θ ∈ A|Y ) = N

(
τ2

σ2 + τ2
Y,

σ2τ2

σ2 + τ2

)
(A),

for every A ∈ B. The posterior mean, a point-estimator for θ, is then given by,

θ̂(Y ) =
τ2

σ2 + τ2
Y.

The frequentist’s critisism of Bayesian statistics focusses on the parameter τ2: the choice that

a subjectivist makes for τ2 may be motivated by expert knownledge or belief, but remains the

statistician’s personal touch in a context where the frequentist would prefer an answer of a

more universal nature. As long as some form of expert knowledge is available, the subjectivist’s

argument constitutes a tenable point of view (or may even be compelling, see examples 1.2.1

and 2.1.2). However, in situations where no prior belief or information on the parameter θ is

available, or if the parameter itself does not have a clear interpretation, the subjectivist has

no answer. Yet a choice for τ2 is required! Enter the objectivist’s approach: if we have no

prior information on θ, why not express our prior ignorance by choosing a “uniform” prior

for θ? As we have seen in section 3.2, uniformity is parametrization dependent (and, as such,

still dependent on the statistician’s personal choice for one parametrization and not another).

Moreover, uniform priors are improper if Θ is unbounded in Rk. In the above example of

estimation of a normal mean, where θ ∈ R is unbounded, insistance on uniformity leads to an

improper prior as well. Perhaps more true to the original interpretation of the prior, we might

express ignorance about τ2 (and eliminate τ2 from the point-estimator θ̂(Y )) by considering

more and more homogeneous (but still normal) priors by means of the limit τ →∞, in which

case we recover the maximum-likelihood estimate: limτ2→∞ θ̂(Y ) = Y .

Remark 3.3.1. From a statistical perspective, however, there exists a better answer to the

question regarding τ2: if τ is not known, why not estimate its value from the data!

In this section, we consider this solution both from the Bayesian and from the frequentist’s

perspective, giving rise to procedures known as hierarchical Bayesian modelling and empirical

Bayesian estimation respectively.

Beforehand, we consider another type of choice of prior, which is motivated primarily by

mathematical convenience. Taking another look at the normal example with which we began

this section, we note that both the prior and the posterior are normal distributions. Since the

calculation of the posterior is tractable, any choice for the location and variance of the normal

prior can immediately be updated to values for location and variance of the normal posterior

upon observation of Y = y. Not only does this signify ease of manipulation in calculations

with the posterior, it also reduces the computational burden dramatically since simulation of

(or, sampling from) the posterior is no longer necessary.
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Definition 3.3.1. Let (P,A ) be a measurable model for an observation Y ∈ Y . Let M

denote a collection of probability distributions on (P,A ). The set M is called a conjugate

family for the model P, if the posterior based on a prior from M again lies in M :

Π ∈M ⇒ Π( · |Y = y) ∈M, (3.8)

for all y ∈ Y .

This structure was first proposed by Raiffa and Schlaifer (1961) [70]. Their method for the

prior choice is usually classified as objectivist because it does not rely on subjectivist notions

and is motivated without reference to outside factors.

Remark 3.3.2. Often in the literature, a prior is refered to as a conjugate prior if the

posterior is of the same form. This practice is somewhat misleading, since it is the family M

that is closed under conditioning on the data Y , a property that depends on the model and M ,

but not on the particular Π ∈M .

Example 3.3.1. Consider an experiment in which we observe n independent Bernoulli trials

and consider the total number of successes, Y ∼ Bin(n, p) with unknown parameter p ∈ [0, 1],

Pp(Y = k) =

(
n

k

)
pk(1− p)n−k.

For the parameter p we choose a prior p ∼ Beta(α, β) from the Beta-family, for some α, β > 0,

dΠ(p) = B(α, β) pα−1(1− p)β−1 dp,

where B(α, β) = Γ(α+ β)/(Γ(α) Γ(β)) normalizes Π. Then the posterior density with respect

to the Lebesgue measure on [0, 1] is proportional to:

dΠ(p|Y ) ∝ pY (1− p)n−Y pα−1(1− p)β−1 dp = pα+Y−1(1− p)β+n−Y−1 dp,

We conclude that the posterior again lies in the Beta-family, with parameters equal to a data-

amended version of those of the prior, as follows:

Π( · |Y ) = Beta(α+ Y, β + n− Y ).

So the family of Beta-distributions is a conjugate family for the binomial model. Depending

on the available amount of prior information on θ, the prior’s parameters may be chosen on

subjective grounds (see figure 2.1 for graphs of the densities of Beta-distributions for various

parameter values). However, in the absence thereof, the parameters α, β suffer from the same

ambiguity that plagues the parameter τ2 featuring in the example with which we opened this

section.

Example 3.3.1 indicates a strategy to find conjugate families for a given parametrized,

dominated model P = {Pθ : θ ∈ Θ}. We view densities y 7→ pθ(y) as functions of the outcome
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Y = y foremost, but they are functions of the parameter θ as well and their dependence

θ 7→ pθ(y) determines which prior densities θ 7→ π(θ) preserve their functional form when

multiplied by the likelihood pθ(Y ) to yield the posterior density.

Although we shall encounter an example of a conjugate family for a non-parametric model

in the next section, conjugate families are, by and large, part of parametric statistics. Many

of these families are so-called exponential families, for which conjugate families of priors can

be found readily.

Definition 3.3.2. A dominated collection of probability measures P = {Pθ : θ ∈ Θ} is called

a k-parameter exponential family, if there exists a k ≥ 1 such that for all θ ∈ Θ,

pθ(x) = exp
( k∑
i=1

ηi(θ)Ti(x)−B(θ)
)
h(x), (3.9)

where h and Ti, i = 1, . . . , k, are statistics and B, ηi, i = 1, . . . , k are real-valued functions

on Θ.

Any exponential family can be parametrized such that the exponent in (3.9) is linear in the

parameter. By the mapping Θ → H : ηi = ηi(θ) (a bijection if the original parametrization

is identifiable), taking Θ into H = η(Θ) and B into A(η) = B(θ(η)), any exponential family

can be rewritten in its so-called canonical form.

Definition 3.3.3. An exponential family P = {Pη : η ∈ H}, H ⊂ Rk is said to be in its

canonical representation, if

pη(x) = exp
( k∑
i=1

ηi Ti(x)−A(η)
)
h(x). (3.10)

In addition, P is said to be of full rank if the interior of H ⊂ Rk is non-void, i.e. H̊ 6= Ø.

Although parametric, exponential families are both versatile modelling tools and mathe-

matically tractable; many common models, like the Bernoulli-, normal-, binomial-, Gamma-,

Poisson-models, etcetera, can be rewritten in the form (3.9). One class of models that can

immediately be disqualified as possible exponential families is that of all models in which the

support depends on the parameter, like the family of all uniform distributions on R, or the

Pareto-model. Their statistical practicality stems primarily from the fact that for an expo-

nential family of full rank, the statistics Ti, i = 1, . . . , k are sufficient and complete, enabling

the use of the Lehmann-Scheffé theorem for minimal-variance unbiased estimation (see, for in-

stance, Lehmann and Casella (1998) [59]). Their versatility can be understood in many ways,

e.g. by the Pitman-Koopman-Darmois theorem (see, Jeffreys (1961) [47]), which says that a

family of distributions whose support does not depend on the parameter, is exponential, if

and only if in the models describing its i.i.d. samples, there exist sufficient statistics whose

dimension remains bounded asymptotically (i.e. as we let the sample size diverge to infinity).

Presently, however, our interest lies in the following theorem, which says that if a model

P constitutes an exponential family, there exists a conjugate family of priors for P.
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Theorem 3.3.1. Let P be a model that can be written as an exponential family, c.f. defi-

nition 3.3.2. Then there exists a parametrization of P of the form (3.10) and the family of

distributions Πµ,λ, defined by Lebesgue probability densities

πµ,λ(η) = K(µ, λ) exp
( k∑
i=1

ηiµi − λA(η)
)
, (3.11)

(where µ ∈ Rk and λ ∈ R are such that 0 < K(µ, λ) <∞), is a conjugate family for P.

Proof It follows from the argument preceding definition 3.3.3 that P can be parametrized

as in (3.10). Choosing a prior on H of the form (3.11), we find that the posterior again takes

the form (3.11),

π(η|X) ∝ exp
( k∑
i=1

ηi(µi + Ti(X))− (λ+ 1)A(η)
)

(the factor h(X) arises both in numerator and denominator of (2.4) and is η-independent, so

that it cancels). The data-amended versions of the parameters µ and λ that emerge from the

posterior are therefore given by:

(µ+ T (X), λ+ 1),

and we conclude that the distributions Πµ,λ form a conjugate family for P. �

Remark 3.3.3. From a frequentist perspective, it is worth noting the import of the factoriza-

tion theorem, which says that the parameter-dependent factor in the likelihood is a function

of the data only through the sufficient statistic. Since the posterior is a function of the likeli-

hood, in which data-dependent factors that do not depend on the parameter can be cancelled

between numerator and denominator, the posterior is a function of the data X only through

the sufficient statistic T (X). Therefore, if the exponential family P is of full rank (so that

T (X) is also complete for P), any point-estimator we derive from this posterior (e.g. the

posterior mean, see definition 2.2.1) that is unbiased and quadratically integrable, is optimal

in the sense of Rao-Blackwell, c.f. the theorem of Lehmann-Scheffé (see Lehmann and Casella

(1998) [59], for explanation of the Rao-Blackwell and Lehmann-Scheffé theorems).

Next, we turn to the Bayesian answer to remark 3.3.2 which said that parameters of the

prior (e.g. τ2) are to be estimated themselves. Recall that the Bayesian views a parameter

to be estimated as just another random variable in the probability model. In case we want

to estimate the parameter for a family of priors, then that parameter is to be included in

the probability space from the start. Going back to the example with which we started

this section, this means that we still use normal distributions Pθ = N(θ, σ2) to model the

uncertainty in the data Y , supply θ ∈ R with a prior Π1 = N(0, τ2) and then proceed to

choose a another prior Π2 for τ2 ∈ (0,∞):

Y |θ, τ2 = Y |θ ∼ Pθ = N(θ, σ2), θ|τ2 ∼ Π1 = N(0, τ2), τ2 ∼ Π2,
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Note that the parameter τ2 has no direct bearing on the model distributions: conditional on θ,

Y is independent of τ2. In a sense, the hierarchical Bayesian approach to prior choice combines

subjective and objective philosophies: whereas the subjectivist will make a definite, informed

choice for τ2 and the objectivist will keep himself as uncommitted as possible by striving for

uniformity, the choice for a hierarchical prior expresses uncertainty about the value of τ2 to be

used in the form of a probability distribution Π2. As such, the hierarchical Bayesian approach

allows for intermediate prior choices: if Π2 is chosen highly concentrated around one point in

the model, resembling a degenerate measure, the procedure will be close to subjective; if Π2

is spread widely and is far from degenerate, the procedure will be less biased and closer to

objective. Besides interpolating between objective and subjective prior choices, the flexibility

gained through introduction of Π2 offers a much wider freedom of modelling. In particular, we

may add several levels of modelled parameter uncertainty to build up a hierarchy of priors for

parameters of priors. Such structures are used to express detailed subjectivist beliefs, much

in the way graphical models are used to build intricate dependency structures for observed

data (for a recent text on graphical models, see chapter 8 of Bishop (2006) [20]). The origins

of the hierarchical approach go back, at least, to Lindley and Smith (1972) [66].

Definition 3.3.4. Let the data Y be random in (Y ,B). A hierarchical Bayesian model for Y

consists of a collection of probability measures P = {Pθ : θ ∈ Θ0}, with (Θ0,G0) measurable

and endowed with a prior Π : G0 → [0, 1] built up in the following way: for some k ≥ 1, we

introduce measurable spaces (Θi,Gi), i = 1, 2, . . . , k and conditional priors

Gi ×Θi+1 → [0, 1] : (G, θi+1) 7→ Πi(G|θi+1),

for i = 1, . . . , k − 1 and a marginal Πk : Gk → [0, 1] on Θk. The prior for the original

parameter θ is then defined by,

Π(θ ∈ G) =

∫
Θ1×...×Θk

Π0(θ ∈ G|θ1) dΠ(θ1|θ2) . . . dΠ(θk−1|θk) dΠk(θk), (3.12)

for all G ∈ G0. The parameters θ1, . . . θk and the priors Π1, . . . ,Π2 are called hyperparameters

and their hyperpriors.

This definition elicits several remarks immediately.

Remark 3.3.4. Definition 3.3.4 of a hierarchical Bayesian model does not constitute a gener-

alization of the Bayesian procedure in any formal sense: after specification of the hyperpriors,

one may proceed to calculate the prior Π, c.f. (3.12), and use it to infer on θ in the ways

indicated in chapter 2 without ever having to revisit the hierachical background of Π. As such,

the significance of the definition lies entirely in its conceptual, subjective interpretation.

Remark 3.3.5. Definition 3.3.4 is very close to the general Bayesian model that incorporates

all parameters (θ, θ1, . . . , θk) as modelling parameters. What distinguishes hierarchical mod-

elling from the general situation is the dependence structure imposed on the parameters. The
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parameter θ is distinct from the hyperparameters by the fact that conditional on θ, the data

Y is independent of θ1, . . . , θk. This distinction is repreated at higher levels in the hierarchy,

i.e. levels are separate from one another through the conditional independence of θi|θi+1 from

θi+2, . . . , , θk.

Remark 3.3.6. The hierarchy indicated in definition 3.3.4 inherently loses interpretability

as we ascend in level. One may be able to give a viable interpretation to the parameter θ

and to the hyperparameter θ1, but higher-level parameters θ2, θ3, . . . become harder and harder

to understand heuristically. Since the interpretation of the hierarchy requires a subjective

motivation of the hyperpriors, interpretability of each level is imperative, or left as a non-

informative choice. In practice, Bayesian hierarchical models are rarely more than two levels

deep (k = 2) and the last hyperprior Πk is often chosen by objective criteria.

Example 3.3.2. We observe the number of surviving offspring from a bird’s litter and aim to

estimate the number of eggs the bird laid: the bird lays N ≥ 0 eggs, distributed according to a

Poisson distribution with parameter λ > 0. For the particular species of bird in question, the

Poisson rate λ is not known exactly: the uncertainty in λ can be modelled in many ways; here

we choose to model it by a Gamma-distribution Γ(α, β), where α and β are chosen to reflect

our imprecise knowledge of λ as well as possible. Each of the eggs then comes out, producing

a viable chick with known probability p ∈ [0, 1], independently. Hence, the total number Y of

surviving chicks from the litter is distributed according to a binomial distribution, conditional

on N ,

Y |N ∼ Bin(N, p), N |λ ∼ Poisson(λ), λ ∼ Γ(α, β).

The posterior distribution is now obtained as follows: conditional on N = n, the probability

of finding Y = k is binomial,

P (Y = k|N = n) =

(
n

k

)
pk(1− p)n−k,

so Bayes’ rule tells us that the posterior is given by:

P (N = n|Y = k) =
P (N = n)

P (Y = k)

(
n

k

)
pk(1− p)n−k.

Since
∑

n≥0 P (N = n|Y = k) = 1 for every k, the marginal P (Y = k) (viz. the denominator

or normalization factor for the posterior given Y = k) can be read off once we have the

expression for the numerator. We therefore concentrate on the marginal for N = n, (n ≥ 0):

P (N = n) =

∫
R
P (N = n|λ) pα,β(λ) dλ =

1

Γ(α)βα

∫ ∞
0

e−λ λn

n!
λα−1 e−λ/β dλ.

The integral is solved using the normalization constant of the Γ((α+n), (β/β+1))-distribution:∫ ∞
0

e
−λβ+1

β λα+n−1 dλ = Γ(α+ n)
( β

β + 1

)α+n
.
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Substituting and using the identity Γ(α+ 1) = αΓ(α), we find:

P (N = n) =
Γ(α+ n)

Γ(α)

1

n!

1

βα

( β

β + 1

)α+n
=

1

n!

( β

β + 1

)n 1

(β + 1)α

n∏
l=1

(
α+ l − 1

)
(3.13)

Although not in keeping with the subjective argumentation we insist on in the introduction to

this example, for simplicity we consider α = β = 1 and find that in that case,

P (N = n) = (1/2)n.

The posterior for N = n given Y = k then takes the form:

P (N = n|Y = k) =
1

2n

(
n

k

)
pk(1− p)n−k

/ ∑
m≥0

1

2m

(
m

k

)
pk(1− p)m−k.

The eventual form of the posterior illustrates remark 3.3.4: in case we choose α = β = 1, the

posterior we find from the hierarchical Bayesian model does not differ from the posterior that

we would have found if we had have started from the non-hierarchical model with a geometric

prior,

Y |N ∼ Bin(N, p), N ∼ Geo(1/2).

Indeed, even if we leave α and β free, the marginal distribution for N we found in (3.13) is

none other than the prior (3.12) for this problem.

The conclusion one should draw from remark 3.3.4 and example 3.3.2, is that the hierar-

chical Bayesian approach adds nothing new to the formal Bayesian procedure: eventually, it

amounts a choice for the prior just like in chapter 2. However, in a subjectivist sense, the

hierarchical approach allows for greater freedom and a more solid foundation to motivate the

choice for certain prior over other possibilities. This point is all the more significant in light

of remark 3.1.1: the motivation of a subjectivist choice for the prior is part of the statistical

analysis rather than an external aspect of the procedure. Hierarchical Bayesian modelling

helps to refine and justify motivations for subjectivist priors.

But the subjectivist answer is not the only one relevant to the statistical perspective

of remark 3.3.2 on the initial question of this section. The objectivist Bayesian may argue

that any hyperprior should be chosen in a non-informative fashion, either as a matter of

principle, or to reflect lack of interpretability or prior information on the parameter τ2. Such

a strategy amounts to the hierarchical Bayesian approach with one or more levels of objective

hyperpriors, a point of view that retains only the modelling freedom gained through the

hierarchical approach.

More unexpected is the frequentist perspective on remark 3.3.2: if τ2 is an unknown, point-

estimate it first and then perform the Bayesian analysis with this point-estimate as a “plug-in”

for the unknown τ2. Critical notes can be placed with the philosophical foundations for this

practice, since it appears to combine the methods of two contradictory schools of statistics.

Be that as it may, the method is used routinely based on its practicality: eventually, the
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justification comes from the subjectivist who does not reject frequentist methods to obtain

expert knowledge on his parameters, as required in his own paradigm.

Remark 3.3.7. Good statistical practice dictates that one may not “peek” at the data to

decide which statistical method to use for the analysis of the same data. The rationale behind

this dictum is that pre-knowledge of the data could bias the analysis. If we take this point

strictly, the choice for a prior (read, the point-estimate for τ2) should not be made on the

basis of the same data Y that is to be used later to derive the posterior for θ. If one has

two independent realisations of the data, one can be used to choose the prior, (here, by a

point-estimate for τ2) and the other to condition on, in the posterior.

Yet the above “rule” cannot be taken too strictly. Any statistician (and common sense)

will tell you that it is crucial for the statistical analysis that one first obtains a certain feeling

for the statistical problem by inspection of the data, before making decisions on how to analyse

it (to see this point driven to the extreme, read, e.g. Tukey (1977) [82]). Ideally, one would

make those decisions based on a sample of the data that is independent of the data used in

the analysis proper. This precaution is often omitted, however: for example, it is common

practice to use “plug-in” parameters based on the sample Y whenever the need arises, possibly

leading to a bias in the subsequent analysis of the same data Y (unless the “plug-in” estimator

is independent of all other estimators used, of course).

There are many different ways in which the idea of a prior chosen by frequentist methods

is applied, all of which go under the name empirical Bayes. Following Berger [8], we note two

types of statistical questions that are especially well suited for application. When we analyse

data pertaining to an individual from a larger population and it is reasonable to assume that

the prior can be inferred from the population, then one may estimate parameters like τ2 above

from population data and use the estimates in the prior for the individual.

Another situation where empirical Bayes is often used, is in model selection: suppose

that there are several models P1,P2, . . . with priors Π1,Π2, . . ., each of which may serve as

a reasonable explanation of the data, depending on an unknown parameter K ∈ {1, 2, . . .}.
The choice to use model-prior pair k in the determination of the posterior can only be made

after observation (or estimation) of K. If K is estimated by freqentist methods, the resulting

procedure belongs to the realm of the empirical Bayes methods.

Example 3.3.3. Consider the situation where we are provided with a specimen from a pop-

ulation that is divided into an unknown number of classes. Assume that all we know about

the classes is that they occur with equal probabilities in the population. The particular class

of our specimen remains unobserved. We perform a real-valued measurement Y on the spec-

imen, which is normally distributed with known variance σ2 and an unknown mean µk ∈ R
that depends on the class k. Then Y is distributed according to a discrete mixture of normal

distributions of the form

Y ∼ PK;µ1,...,µK =
1

K

K∑
k=1

N(µk, 1)



Conjugate families, hierarchicaland empirical Bayes 69

where µ = (µ1, . . . , µK) ∈ RK are unknown. For every K ≥ 1, we have a model of the form,

PK = {PK;µ1,...,µK : µ1, . . . , µK ∈ R}

Each of these models can be endowed with a prior ΠK on RK , for example, by declaring

µ1, . . . , µK independent and marginally distributed standard normal:

µ ∼ ΠK = N(0, IK).

At this point, a Bayesian would choose a hyperprior Π2 for the discrete hyperparameter K ≥ 1

and proceed to calculate the posterior on all models PK , weighed by the prior masses Π2(K =

k) for all k ≥ 1. Alternatively, the Bayesian can use Bayes’ factors to make a decision as to

which value of K to use, reducing the analysis to a selected, or estimated value for K.

Here, we concentrate on the frequentist approach. The frequentist also aims to select one

of the models PK : in the empirical Bayes approach, we “point-estimate” which model-prior

combination we shall be using to analyse the data, from the choices (PK ,ΠK), K ≥ 1. In

such a case, inspection of the data may reveal which number of classes is most appropriate, if

one observes clearly separated peaks in the observations, in accordance with the second point

made in remark 3.3.7. Otherwise, frequentist methods exist to estimate K, for instance from

a larger population of specimens. After we have an estimate K̂ for K, we are in a position to

calculate the posterior for µ based on (PK̂ ,ΠK̂).

There are two remarks to be made with regard to the estimation of K from a larger pop-

ulation of specimens: first of all, maximization of the likelihood will always lead to a number

of classes in the order of the samplesize, simply because the largest number of classes offers

the most freedom and hence always provides the best fit to the data. A similar phenomenon

arises in regression, where it is called over-fitting, if we allow regression polynomials of ar-

bitrary degree: the MLE will fit the data perfectly by choosing a polynomial of degree in the

order of the samplesize. Therefore in such questions of model selection, penalized likelihood

criteria are employed which favour low-dimensional models over high-dimensional ones, i.e.

smaller choices for K over larger ones. Note that it is not clear, neither intuitively nor math-

ematically, how the penalty should depend on K, nor which proportionality between penalty

and likelihood is appropriate (see, however, the AIC and BIC criteria for model selection

[77]). The Bayesian faces the same problem when he chooses a prior for K: if he assigns

too much prior weight to the higher-dimensional models, his estimators (or, equivalently, the

bulk of the resulting posterior’s mass) will get the chance to “run off” to infinity with growing

samplesize, indicating inconsistency from over-fitting. Indeed, the correspondence between the

frequentist’s necessity for a penalty in maximum-likelihood methods on the one hand, and the

Bayesian’s need for a prior expressing sufficient bias for the lower-dimensional model choices

on the other, is explained in remark 2.2.7.

On another sidenote: it is crucial in the example above that all classes are represented

in equal proportions. Otherwise identifiability and testability problems arise and persist even

after we decide to exclude from the model the vectors µ which have µi = µj for some i 6= j.
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If one imagines the situation where the number of observations is of the same order as the

number of classes, this should come as no surprise.

A less ambitious application of empirical Bayesian methods is the estimation of hyper-

parameters by maximum-likelihood estimation through the prior predictive distribution (see

definition 2.1.4). Recall that the marginal distribution of the data in the subjectivist Bayesian

formulation (c.f. section 2.1) predicts how the data is distributed. This prediction may be

reversed to decide which value for the hyperparameter leads to the best explanation of the

observed data, where our notion of “best” is based on the likelihood principle.

Denote the data by Y and assume that it takes its values in a measurable space (Y ,B).

Denote the model by P = {Pθ : θ ∈ Θ0}. Consider a family of priors parametrized by a

hyperparameter η ∈ H, {Πη : η ∈ H}. For every η, the prior predictive distribution Pη is

given by:

Pη(A) =

∫
Θ
Pθ(A) dΠη(θ),

for all A ∈ B, i.e. we obtain a new model for the observation Y , given by P ′ = {Pη : η ∈ H},
contained in the convex hull of the original model co(P). Note that this new model is

parametrized by the hyperparameter; hence if we close our eyes to the rest of the problem

and we follow the maximum-likelihood procedure for estimation of η in this new model, we

find the value of the hyperparameter that best explains the observation Y . Assuming that

the model P ′ is dominated, with densities {pη : η ∈ H}, the maximum-likelihood estimate is

found as the point η̂(Y ) ∈ H such that

pη̂(Y ) = sup
η∈H

pη(Y ).

by the usual methods, analytically or numerically.

Definition 3.3.5. The estimator η̂(Y ) is called the ML-II estimator, provided it exists and

is unique.

Remark 3.3.8. There is one caveat that applies to the ML-II approach: in case the data Y

consists of an i.i.d.-distributed sample, the prior predictive distribution describes the sample

as exchangeable, but not i.i.d.! Hence, comparison of prior predictive distributions with the

data suffer from the objection raised in remark 2.1.3. The frequentist who assumes that the

true, underlying distribution Pn0 of the sample is i.i.d., therefore has to keep in mind that the

ML-II model is misspecified. By the law of large numbers, the maximum-likelihood estimator

η̂n(X1, . . . , Xn) will converge asymptotically to the set of points S in H that minimize the

Kullback-Leibler divergence, i.e. those η∗ ∈ H such that:

−P0 log
pη∗

p0
= inf

η∈H
−P0 log

pη
p0
,

provided that such points exist. (What happens otherwise is left as an exercise to the reader.)

Example 3.3.4. Consider the example with which we began this section: the data Y is nor-

mally distributed with unknown mean θ and known variance σ2. The prior for θ is chosen

normal with mean 0 and variance τ2.
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3.4 Dirichlet process priors

The construction of priors on non-parametric models is far from trivial. Broadly, there are

two mathematical reasons for this: whereas the usual norm topology on Rk is unique (in

the sense that all other norm topologies are equivalent, see [67]), infinite-dimensional vector

spaces support many different norm topologies and various other topologies besides. Similarly,

whereas on Rk the (unique shift-invariant) Lebesgue measure provides a solid foundation for

the definition of models in terms of densities, no such default uniform dominating measure

exists in infinite-dimensional spaces.

Nevertheless, there are constructions of probability measures on infinite-dimensional spaces,

for example so-called Gaussian measures on Banach and Hilbert spaces. Some of these con-

structions and the properties of the measures they result in, are discussed in great detail in

Ghosh and Ramamoorthi (2003) [42]. In this section, we look at a class of priors first proposed

by Ferguson (1973) [34], which have become known as Dirichlet process priors.

The Dirichlet process prior arises as the non-parametric analog of the Dirichlet distribution

on finite-dimensional spaces of probability distributions, which we consider in some detail

first. Let X = {1, 2, . . . , k} (with its powerset 2X as a σ-algebra) and consider the collection

M(X ) of all probability measures on X . Every P ∈ M(X ) has a density p : X → [0, 1]

(with respect to the counting measure on X ) and we denote pi = p(i) = P ({i}), so that for

every A ∈ 2X ,

P (A) =
∑
l∈A

pl.

Therefore, the space M(X ) can be parametrized as follows,

M(X ) =
{
P : 2X → [0, 1] :

k∑
i=1

pi = 1, pi ≥ 0, (1 ≤ i ≤ k)
}
,

and is in bijective correspondence with the simplex in Rk. For reasons to be discussed shortly,

we consider the following family of distributions on M(X ).

Definition 3.4.1. (Finite-dimensional Dirichlet distribution)

Let α = (α1, . . . , αk) with αi > 0 for all 1 ≤ i ≤ k. A stochastic vector p = (p1, . . . , pk) is said

to have Dirichlet distribution Dα with parameter α, if the density π for p satisfies:

π(p) =
Γ
(∑k

i=1 αi
)

Γ(α1) . . .Γ(αk)
pα1−1

1 pα2−1
2 . . . p

αk−1−1
k−1

(
1−

k−1∑
i=1

pi

)αk−1

If αi = 0 for some i, 1 ≤ αi ≤ k, then we set Dα(pi = 0) = 1 marginally and we treat the

remaining components of p as (k − 1)-dimensional.

As an example, consider the case where k = 2 (so that p2 = 1 − p1): in that case, the

density of the Dirichlet distribution takes the form:

π(p1, p2) =
Γ(α1 + α2)

Γ(α1) Γ(α2)
pα1−1

1 (1− p1)α2−1,
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i.e. p1 has a Beta distribution B(α1, α2). Examples of graphs of Beta densities with α1 = k+1,

α2 = n − k + 1 for various integer values of k are depicted in figure 2.1). We also note the

following two well-known facts on the Dirichlet distribution (proofs can be found in [42]).

Lemma 3.4.1. (Gamma-representation of Dα)

If Z1, . . . , Zk are independent and each marginally distributed according to a Γ-distribution

with parameter αi, i.e.

Zi ∼ Γ(αi),

for all 1 ≤ i ≤ k, then the normalized vector(Z1

S
, . . . ,

Zk
S

)
∼ Dα, (3.14)

with S =
∑k

i=1 Zi.

Lemma 3.4.1 shows that we may think of a Dα-distributed vector as being composed

of k independent, Γ-distributed components, normalized to form a probability distribution,

through division by S in (3.14). This division should be viewed as an L1-projection from

the positive cone in Rk onto the k − 1-dimensional simplex. The following property can also

be viewed as a statement on the effect of a projection on a distribution, this time from the

simplex in Rk to lower-dimensional simplices. It is this property (related to a property called

infinite divisibility of the Dirichlet distribution) that motivates the choice for the Dirichlet

distribution made by definition 3.4.1.

Lemma 3.4.2. Let X be a finite pointset. If the density p : X → [0, 1] of a distribution P

is itself distributed according to a Dirichlet distribution with parameter α, p ∼ Dα, then for

any partition {A1, . . . , Am} of X , the vector of probabilities (P (A1), P (A2), . . . , P (Am)) has

a Dirichlet distribution again,(
P (A1), P (A2), . . . , P (Am)

)
∼ Dα′ ,

where the parameter α′ is given by:

(α′1, . . . , α
′
m) =

(∑
l∈A1

αl, . . . ,
∑
l∈Am

αl

)
. (3.15)

The identification (3.15) in lemma 3.4.2 suggests that we adopt a slightly different per-

spective on the definition of the Dirichlet distribution: we view α as a finite measure on X ,

so that P ∼ Dα, if and only if, for every partition (A1, . . . , Am),(
P (A1), . . . , P (Am)

)
∼ D(α(A1),...,α(Am)). (3.16)

Property (3.16) serves as the point of departure of the generalization to the non-parametric

model, because it does not depend on the finite nature of X .
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Definition 3.4.2. Let X be a finite pointset; denote the collection of all probability measures

on X by M(X ). The Dirichlet family D(X ) is defined to be the collection of all Dirichlet

distributions on M(X ), i.e. D(X ) consists of all Dα with α a finite measure on X .

The following property of the Dirichlet distribution describes two independent Dirichlet-

distributed quantities in convex combination, which form a new Dirichlet-distributed quantity

if mixed by means of an (independent) Beta-distributed parameter.

Lemma 3.4.3. Let X be a finite pointset and let α1, α2 be two measures on (X , 2X ). Let

(P1, P2) be independent and marginally distributed as

P1 ∼ Dα1 , P2 ∼ Dα2 .

Furthermore, let λ be independent of P1, P2 and marginally distributed according to λ ∼
B(α1(X ), α2(X )). Then the convex combination λP1 + (1 − λ)P2 again has a Dirichlet

distribution with base measure α1 + α2:

λP1 + (1− λ)P2 ∼ Dα1+α2 .

Many other properties of the Dirichlet distribution could be considered here, most notably

the so-called tail-free property and neurality to the right (see [42]). We do not provide details

because both are rather technical and we do not use them in following chapters, but the reader

should be aware of their existence because some authors use them extensively.

A most important property of the family of Dirichlet distributions is its conjugacy for the

full non-parametric model.

Theorem 3.4.1. Let X be a finite pointset; let X1, . . . , Xn denote an i.i.d. sample of obser-

vations taking values in X . The Dirichlet family D(X ) is a conjugate family: if the prior

equals Dα, the posterior equals Dα+nPn.

Proof Since X is finite (#(X ) = k), M(X ) is dominated (by the counting measure), so

the posterior can be written as in (2.8). The likelihood takes the form:

P 7→
n∏
i=1

p(Xi) =

k∏
l=1

pnll ,

where nl = #{Xi = l : 1 ≤ i ≤ n}. Multiplying by the prior density for Π = Dα, we find that

the posterior density is proportional to,

π(p1, . . . , pk|X1, . . . , Xn) ∝ π(p1, . . . , pk)

n∏
i=1

pXi

∝
k∏
l=1

pnll

k−1∏
l=1

pαl−1
l

(
1−

k−1∑
i=1

pi

)αk−1
=

k−1∏
l=1

pαl+nl−1
l

(
1−

k−1∑
i=1

pi

)αk+nk−1
,
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which is again a Dirichlet density, but with changed base measure α. Since the posterior is a

probability distribution, we know that the normalization factor follows suit. Noting that we

may view nl as the density of the measure nPn since

nl =
n∑
i=1

1{Xi = l} = nPn1{X = l},

we complete the argument. �

Next we consider the Dirichlet process prior, a probability measure on the full non-

parametric model for a measurable space (X ,B). For the sake of simplicity, we assume that

X = R and B is the Borel σ-algebra on R. We denote the collection of all probability measures

on (R,B) by M(R,B). We consider the collection of random quantities {P (A) : A ∈ B} and

impose two straightforward conditions on its finite-dimensional marginals. The Kolmogorov

existence theorem (see theorem A.5.1) then guarantees existence of a stochastic process with

finitely additive sample path P : B → [0, 1]. Said straightforward conditions are satisfied

if we choose the finite-dimensional marginal distributions to be (finite-dimensional) Dirichlet

distributions (3.16). Also by this choice, σ-additivity of P can be guaranteed. The resulting

process on the space of all probability measures on (X ,B) is called the called the Dirichlet

process and the associated probability measure Π is called the Dirichlet process prior.

Theorem 3.4.2. (Existence of the Dirichlet process)

Given a finite measure α on (R,B), there exists a probability measure Dα on M(R,B) (called

the Dirichlet process prior with parameter α) such that for P ∼ Dα and every B-measurable

partition (B1, . . . , Bk) of R,(
P (B1), . . . , P (Bk)

)
∼ D(α(B1),...,α(Bk)). (3.17)

Proof Let k ≥ 1 and A1, . . . , Ak ∈ B be given. Through the indicators 1Ai for these sets,

we define 2k new sets

1Bν1...νk =

k∏
i=1

1νiAi(1− 1Ai)
1−νi ,

where ν1, . . . , νk ∈ {0, 1}. Then the collection {Bν1...νk : νi ∈ {0, 1}, 1 ≤ i ≤ k} forms a

partition of R. For the P -probabilities corresponding to this partition, we assume finite-

dimensional marginals(
P (Bν1...νk) : νi ∈ {0, 1}, 1 ≤ i ≤ k

)
∼ ΠBν1...νk :νi∈{0,1},1≤i≤k,

The distribution of the vector (P (A1), . . . , P (Ak)) then follows from the definition:

P (Ai) =
∑
{i:νi=1}

P (Bν1...νk),

for all 1 ≤ i ≤ k. This defines marginal distributions for all finite subsets of B, as needed

in theorem A.5.1. To define the underlying probability space (Ω,F ,Π) we now impose two

conditions.
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(F1) With Π-probability one, the empty set has P -measure zero:

Π
(
P (Ø) = 0

)
= 1.

(F2) Let k, k′ ≥ 1 be given. If (B1, . . . , Bk) is a partition and (B′1, . . . , B
′
k′) a refinement

thereof, with

B1 =

r1⋃
i=1

B′i, . . . , Bk =
k′⋃

i=rk−1+1

B′i,

(for certain r1 < . . . < rk−1), then we have the following equality in distribution:

L
( r1∑
i=1

P (B′i), . . . ,

k′∑
i=rk−1+1

P (B′i)
)

= L
(
P (B1), . . . , P (Bk)

)
.

Condition (F1) ensures that if (A1, . . . , Ak) is itself a partition of R, the above construction

does not lead to a contradiction. Condition (F2) ensures finite additivity of P with prior

probability one, i.e. for any A,B,C ∈ B such that A ∩B = Ø and A ∪B = C,

Π
(
P (A) + P (B) = P (C)

)
= 1. (3.18)

Ferguson (1973,1974) [34, 35] has shown that conditions (F1) and (F2) imply that Kol-

mogorov’s consistency conditions (K1) and (K2) (see section A.5) are satisfied. As we have

seen in the first part of this section, if we impose the Dirichlet distribution:(
P (Bν1...νk) : νi ∈ {0, 1}, 1 ≤ i ≤ k

)
∼ D{α(Bν1...νk ):νi∈{0,1},1≤i≤k}. (3.19)

and α is a measure on B, condition (F2) is satisfied. Combining all of this, we conclude that

there exists a probability space (Ω,F ,Π) on which the stochastic process {P (A) : A ∈ B}
can be represented with finite dimensional marginals c.f. (3.19). Lemma 3.4.4 shows that

Π(P ∈M(R,B)) = 1, completing the proof. �

The last line in the above proof may require some further explanation: P is merely the

sample-path of our stochastic process. The notation P (A) suggests that P is a probability

measure, but all we have shown up to that point, is that (F1) and (F2) imply that P is a

finitely additive set-function such that:

Π
(
P (B) ∈ [0, 1]

)
= 1,

with Π-probability equal to one. What remains to be demonstrated is Π-almost-sure σ-

additivity of P .

Lemma 3.4.4. If Π is a Dirichlet process prior Dα on M(X ,B),

Π
(
P is σ-additive

)
= 1.
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Proof Let (An)n≥1 be a sequence in B that decreases to Ø. Since α is σ-additive, α(An)→
α(Ø) = 0. Therefore, there exists a subsequence (Anj )j≥1 such that

∑
j α(Anj ) < ∞. For

fixed ε > 0, using Markov’s inequality first,∑
j≥1

Π
(
P (Anj ) > ε

)
≤
∑
j≥1

1

ε

∫
P (Anj ) dΠ(P ) =

1

ε

∑
j≥1

α(Anj )

α(R)
<∞,

according to lemma 3.4.5. From the Borel-Cantelli lemma (see lemma A.2.1), we see that

Π
(
lim sup
j→∞

{P (Anj ) > ε}
)

= Π
(⋂
J≥1

⋃
j≥J
{P (Anj ) > ε}

)
= 0,

which shows that limj P (Anj ) = 0, Π-almost-surely. Since, by Π-almost-sure finite additivity

of P ,

Π
(
P (An) ≥ P (An+1) ≥ . . .

)
= 1,

we conclude that limn P (An) = 0, Π-almost-surely. By the continuity theorem for measures

(see theorem A.2.1 and the proof in [52], theorem 3.2), P is σ-additive Π-almost-surely. �

The proof of lemma 3.4.4 makes use of the following lemma, which establishes the basic

properties of the Dirichlet process prior.

Lemma 3.4.5. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Let B ∈ B be given.

(i) If α(B) = 0, then P (B) = 0, Π− a.s.

(ii) If α(B) > 0, then P (B) > 0, Π− a.s.

(iii) The expectation of P under Dα is given by∫
P (B) dDα(P ) =

α(B)

α(R)
.

Proof Let B ∈ B be given. Consider the partition (B1, B2) of R, where B1 = B, B2 = R\B.

According to (3.17), (
P (B1), P (B2)

)
∼ D(α(B),α(R)−α(B)),

so that P (B) ∼ B(α(B), α(R)− α(B)). Stated properties then follow from the properties of

the Beta-distribution. �

This concludes the proof for the existence of Dirichlet processes and the associated priors.

One may then wonder what is the nature of the prior we have constructed. As it turns out,

the Dirichlet process prior has some remarkable properties.

Lemma 3.4.6. (Support of the Dirichlet process prior)

Consider M(R,B), endowed with the topology of weak convergence. Let α be a finite measure

on (R,B). The support of Dα is given by

Mα(R,B) =
{
P ∈M(R,B) : supp(P ) ⊂ supp(α)

}
.
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In fact, we can be more precise, as shown in the following lemma.

Lemma 3.4.7. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Let Q ∈M(R,B) be such that Q� α. Then, for any

m ≥ 1 and A1, . . . , Am ∈ B and ε > 0,

Dα

{
P ∈M(R,B) : |P (Ai)−Q(Ai)| < ε, 1 ≤ i ≤ m

}
> 0.

Proof The proof of this lemma can be found in [42], theorem 3.2.4. �

So if we endow M(R,B) with the (slightly stronger) topology of pointwise onvergence (see

definition A.7.2), the support of Dα remains large, consisting of all P ∈ M(R,B) that are

dominated by α.

The following property reveals a most remarkable characterization of Dirichlet process

priors: the subset D(R,B) of all finite convex combinations of Dirac measures (see exam-

ple A.2.2) receives prior mass equal to one.

Lemma 3.4.8. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Then,

Dα

{
P ∈ D(R,B)

}
= 1.

Proof The proof of this lemma can be found in [42], theorem 3.2.3. �

The above phenomenon leads to problems with support or convergence in stronger topolo-

gies (like total variation or Hellinger topologies) and with regard to the Kullback-Leibler

criteria mentioned in the asymptotic theorems of chapter 4. Generalizing this statement some-

what, we may infer from the above that the Dirichlet process prior is not suited to (direct)

estimation of densities. Although clearly dense enough in M(R,B) in the toplogy of weak

convergence, the set D(R,B) may be rather sparse in stronger topologies! (Notwithstanding

the fact that mixture models with a Dirichlet process prior for the mixing distribution can be

(minimax) optimal for the estimation of mixture densities [41].)

Lemma 3.4.9. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Let g : R→ R be non-negative and Borel-measurable.

Then, ∫
R
g(x) dα(x) <∞ ⇔

∫
R
g(x) dP (x) <∞, (Dα − a.s.).

Proof Add proof! �

Perhaps the most important result of this section is the fact that the family of Dirichlet

process priors on M(R,B) is a conjugate family for the full, non-parametric model on (R,B),

as stated in the following theorem.
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Theorem 3.4.3. Let X1, X2, . . . be an i.i.d. sample of observations in R. Let α be a finite

measure on (R,B) with associated Dirichlet process prior Π = Dα. For any measurable

C ⊂M(R,B),

Π
(
P ∈ C

∣∣ X1, . . . , Xn

)
= Dα+nPn(C),

i.e. the posterior is again a Dirichlet process distribution, with base measure α+ nPn

Proof The proof is a direct consequence of theorem 3.4.1 and the fact that equality of two

measures on a generating ring implies equality on the whole σ-algebra. (Cylindersets generate

the relevant σ-algebra and for cylindersets, theorem 3.4.1 asserts equality.) �

Example 3.4.1. Let X1, X2, . . . be an i.i.d. sample of observations in R. Let α be a finite

measure on (R,B) with associated Dirichlet process prior Π = Dα. Let B ∈ B be given. The

expectation of P (B) under the prior distribution equals,∫
P (B) dDα(P ) =

α(B)

α(R)
, (3.20)

the measure of B under α normalized to be a probability measure (which we denote by Pα(B)).

The posterior mean (see definition 2.2.1), is then given by:∫
P (B) dΠ

(
P
∣∣ X1, . . . , Xn

)
=

∫
P (B) dDα+nPn(P ) =

(α+ nPn)(B)

(α+ nPn)(B)

=
α(R)

α(R) + n
Pα(B) +

n

α(R) + n
Pn(B),

Pn0 -almost-surely. Defining λn = α(R)/(α(R) + n), we see that the posterior mean P̂n can be

viewed as a convex combination of the prior mean distribution and the empirical distributions,

P̂n = λn Pα + (1− λn)Pn,

Pn0 -almost-surely. As a result, we see that

‖P̂n − Pn‖TV = λn‖Pα − Pn‖ ≤ λn,

Pn0 -almost-surely. Since λn → 0 as n → ∞, the difference between the sequence of posterior

means (P̂n)n≥1 and the sequence of empirical measures (Pn)n≥1 converges to zero in total

variation as we let the samplesize grow to infinity. Generalizing likelihood methods to non-

dominated models, Dvoretzky, Kiefer and Wolfowitz (1956) [30] have shown that the empirical

distribution Pn can be viewed as the non-parametric maximum-likelihood estimator (usually

abbreviated NPMLE). This establishes (an almost-sure form of) consistency for the posterior

mean, in the sense that it has the same point of convergence as the NPMLE. In chapter 4,

convergence of the posterior distribution (and in particular its mean) to the MLE will manifest

itself as a central connection between frequentist and Bayesian statistics.
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Remark 3.4.1. The above example provides the subjectivist with a guideline for the choice

of the base measure α. More particularly, equality (3.20) says that the prior predictive distri-

bution equals the (normalized) base measure α. In view of the fact that subjectivists should

choose the prior to reflect their prior “beliefs”, α should therefore be chosen such that it assigns

relatively high mass to sets B ∈ B that are believed to be probable.

3.5 Exercises

Exercise 3.1. A proper Jeffreys prior

Let X be a random variable, distributed Bin(n; p) for known n and unknown p ∈ (0, 1).

Calculate Jeffreys prior for this model, identify the standard family of probability distributions

it belongs to and conclude that this Jeffreys prior is proper.

Exercise 3.2. Jeffreys and uniform priors

Let P be a model parametrized according to some mapping Θ → P : θ 7→ Pθ. Assuming

differentiability of this map, Jeffreys prior Π takes the form (3.7). In other parametrizations,

the form of this expression remains the same, but the actual dependence on the parameter

changes. This makes it possible that there exists another parametrization of P such that

Jeffreys prior is equal to the uniform prior. We shall explore this possibility in three exercises

below.

For each of the following models in their ’standard’ parametrizations θ 7→ Pθ, find a parameter

η ∈ H, η = η(θ), such that the Fisher information Iη, expressed in terms of η, is constant.

a. Find η for P the model of all Poission distributions.

b. In the cases α = 1, 2, 3, find η for the model P consisting of all Γ(α, θ)-distributions,

with θ ∈ (0,∞).

c. Find η for the model P of all Bin(n; θ) distributions, where n is known and θ ∈ (0, 1).

Note that if the Fisher information Iη is constant, Jeffries prior is uniform. Therefore,

if H is unbounded, Jeffries prior is improper.

Exercise 3.3. Optimality of unbiased Bayesian point estimators

Let P be a dominated, parametric model, parametrized identifiably by Θ → P : θ 7→ Pθ, for

some Θ ⊂ Rk. Assume that (X1, . . . , Xn) ∈ X n form an i.i.d. sample from a distribution

P0 = Pθ0 ∈ P, for some θ0 ∈ Θ. Let Π be a prior on Θ and denote the posterior by

Π(·|X1, . . . , Xn). Assume that T : X n → Rm is a sufficient statistic for the model P.

a. Use the factorization theorem to show that the posterior depends on the data only through

the sufficient statistic T (X1, . . . , Xn).

b. Let θ̂n : X n → Θ denote a point-estimator derived from the posterior. Use a. above to

argue that there exists a function θ̃n : Rm → Θ, such that,

θ̂n(X1, . . . , Xn) = θ̃n(T (X1, . . . , Xn)).
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Bayesian point-estimators share this property with other point-estimators that are derived from

the likelihood function, like the maximum-likelihood estimator and penalized versions thereof.

Next, assume that Pn0 (θ̂n)2 <∞ and that θ̂n is unbiased, i.e. Pn0 θ̂n = θ0.

c. Apply the Lehmann-Scheffé theorem to prove that, for any other unbiased estimator

θ̂′n : X n 7→ Θ,

Pn0 (θ̂n − θ0)2 ≤ Pn0 (θ̂′n − θ0)2.

The message of this exercise is, that Bayesian point-estimators that happen to be unbiased and

quadratically integrable, are automatically L2-optimal in the class of all unbiased estimators

for θ. They share this remarkable property with maximum-likelihood estimators.

Exercise 3.4. Conjugate model-prior pairs

In this exercise, conjugate model-prior pairs (P,Π) are provided. In each case, we denote the

parameter we wish to estimate by θ and assume that other parameters have known values. Let

X denote a single observation.

In each case, derive the posterior distribution to prove conjugacy and identify the X-dependent

transformation of parameters that takes prior into posterior.

a. X|θ ∼ N(θ, σ2) and θ ∼ N(µ, τ2).

b. X|θ ∼ Poisson(θ) and θ ∼ Γ(α, β).

c. X|θ ∼ Γ(ν, θ) and θ ∼ Γ(α, β).

d. X|θ ∼ Bin(n; θ) and θ ∼ β(α, β).

e. X|θ ∼ N(µ, θ−1) and θ ∼ Γ(α, β).

f. X|θ1, . . . , θk ∼ M(n; θ1, . . . , θk) and θ ∼ Dα, where M denotes the multinomial distri-

bution for n observations drawn from k classes with probabilities θ1, . . . , θk and Dα is a

Dirichlet distribution on the simplex in Rk (see definition 3.4.1).

Exercise 3.5. In this exercise, we generalize the setup of example 3.3.2 to multinomial rather

than binomial context. Let k ≥ 1 be known. Consider an observed random variable Y and an

unobserved N = 1, 2, . . ., such that, conditionally on N , Y is distributed multinomially over

k classes, while N has a Poisson distribution with hyperparameter λ > 0,

Y |N ∼Mk(N ; p1, p2, . . . , pk), N ∼ Poisson(λ).

Determine the prior predictive distribution of Y , as a function of the hyperparameter λ.

Exercise 3.6. Let X1, . . . , Xn form an i.i.d. sample from a Poisson distribution Poisson(θ)

with unknown θ > 0. As a family of possible priors for the Bayesian analysis of this data,

consider exponential distributions θ ∼ Πλ = Exp(λ), where λ > 0 is a hyperparameter.

Calculate the prior predictive distribution for X and the ML-II estimate λ̂. With this estimated

hyperparameter, give the posterior distribution θ|X1, . . . , Xn. Calculate the resulting posterior

mean and comment on its data-dependence.
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Exercise 3.7. Let X1, . . . , Xn form an i.i.d. sample from a binomial distribution Bin(n; p),

given p ∈ [0, 1]. For the parameter p we impose a prior p ∼ β(α, β) with hyperparameters

α, β > 0.

Show that the family of β-distributions is conjugate for binomial data. Using (standard ex-

pressions for) the expectation and variance of β-distributions, give the posterior mean and

variance in terms of the original α and β chosen for the prior and the data. Calculate the

prior predictive distribution and give frequentist estimates for α and β. Substitute the result

in the posterior mean and comment on (asymptotic) data dependence of the eventual point

estimator.





Appendix A

Measure theory

In this appendix we collect some important notions from measure theory. The goal is not

to present a self-contained presentation, but rather to establish the basic definitions and

theorems from the theory for reference in the main text. As such, the presentation omits

certain existence theorems and many of the proofs of other theorems (although references are

given). The focus is strongly on finite (e.g. probability-) measures, in places at the expense

of generality. Some background in elementary set-theory and analysis is required. As a

comprehensive reference, we note Kingman and Taylor (1966) [52], alternatives being Dudley

(1989) [29] and Billingsley (1986) [15].

A.1 Sets and sigma-algebras

Rough setup: set operations, monotony of sequences of subsets, set-limits, sigma-algebra’s,

measurable spaces, set-functions, product spaces.

Definition A.1.1. A measurable space (Ω,F ) consists of a set Ω and a σ-algebra F of

subsets of Ω.

A.2 Measures

Rough setup: set-functions, (signed) measures, probability measures, sigma-additivity, sigma-

finiteness

Theorem A.2.1. Let (Ω,F ) be a measurable space with measure µ : F → [0,∞]. Then,

(i) for any monotone decreasing sequence (Fn)n≥1 in F such that µ(Fn) <∞ for some n,

lim
n→∞

µ(Fn) = µ
( ∞⋂
n=1

Fn

)
, (A.1)
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(ii) for any monotone increasing sequence (Gn)n≥1 in F ,

lim
n→∞

µ(Gn) = µ
( ∞⋃
n=1

Gn

)
, (A.2)

Theorem A.2.1) is sometimes referred to as the continuity theorem for measures, because

if we view ∩nFn as the monotone limit limFn, (A.1) can be read as limn µ(Fn) = µ(limn Fn),

expressing continuity from below. Similarly, (A.2) expresses continuity from above. Note that

theorem A.2.1 does not guarantee continuity for arbitrary sequences in F . It should also be

noted that theorem A.2.1) is presented here in simplified form: the full theorem states that

continuity from below is equivalent to σ-additivity of µ (for a more comprehensive formulation

and a proof of theorem A.2.1, see [52], theorem 3.2).

Example A.2.1. Let Ω be a discrete set and let F be the powerset 2Ω of Ω, i.e. F is the

collection of all subsets of Ω. The counting measure n : F → [0,∞] on (Ω,F ) is defined

simply to count the number n(F ) of points in F ⊂ Ω. If Ω contains a finite number of points,

n is a finite measure; if Ω contains a (countably) infinite number of points, n is σ-finite. The

counting measure is σ-additive.

Example A.2.2. We consider R with any σ-algebra F , let x ∈ R be given and define the

measure δx : F → [0, 1] by

δx(A) = 1{x ∈ A},

for any A ∈ F . The probability measure δx is called the Dirac measure (or delta measure, or

atomic measure) degenerate at x and it concentrates all its mass in the point x. Clearly, δx

is finite and σ-additive. Convex combinations of Dirac measures, i.e. measures of the form

P =
m∑
j=1

αjδxj ,

for some m ≥ 1 with α1, . . . , αm such that αj ≥ 0 and
∑m

j=1 αj = 1, can be used as a statistical

model for an observation X that take values in a discrete (but unknown) subset {x1, . . . , xm}
of R. The resulting model (which we denote D(R,B) for reference) is not dominated.

Often, one has a sequence of events (An)n≥1 and one is interested in the probability of a

limiting event A, for example the event that An occurs infinitely often. The following three

lemmas pertain to this situation.

Lemma A.2.1. (First Borel-Cantelli lemma)

Let (Ω,F , P ) be a probability space and let (An)n≥1 ⊂ F be given and denote A = lim supAn.

If ∑
n≥1

P (An) <∞,

then P (A) = 0.
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In the above lemma, the sequence (An)n≥1 is general. To draw the converse conclusion,

the sequence needs to exist of independent events.

Lemma A.2.2. (Second Borel-Cantelli lemma)

Let (Ω,F , P ) be a probability space and let (An)n≥1 ⊂ F be independent and denote A =

lim supAn. If ∑
n≥1

P (An) =∞,

then P (A) = 1.

Together, the Borel-Cantelli lemmas assert that for a sequence of independent events

(An)n≥1, P (A) equals zero or one, according as
∑

n P (An) converges or diverges. As such,

this corollary is known as a zero-one law , of which there are many in probability theory.

exchangability, De Finetti’s theorem

Theorem A.2.2. (De Finetti’s theorem) State De Finetti’s theorem.

Theorem A.2.3. (Ulam’s theorem) State Ulam’s theorem.

Definition A.2.1. Let (Y ,B) be a measurable space. Given a set-function µ : B → [0,∞],

the total variation total-variation norm of µ is defined:

‖µ‖TV = sup
B∈B
|µ(B)|. (A.3)

Lemma A.2.3. Let (Y ,B) be a measurable space. The collection of all signed measures on

Y forms a linear space and total variation is a norm on this space.

A.3 Measurability and random variables

Rough setup: measurability, monotone class theorem, simple functions, random variables,

approximating sequences.

A.4 Integration

Rough setup: the definition of the integral, its basic properties, limit-theorems (Fatou, dom-

inated convergence) and Lp-spaces.

Definition A.4.1. Let (Ω,F , µ) be a measure space. A real-valued measurable function

f : Ω→ R is said to be µ-integrable if∫
O
mega|f | dµ <∞. (A.4)
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Remark A.4.1. If f is a stochastic vector taking values in Rd, the above definition of inte-

grability is extended naturally by imposing (A.4) on each of the component functions. This

extension is more problematic in infinite-dimensional spaces. However, various generaliza-

tions can be found in an approach motivated by functional analysis (see Megginson (1998)

[67] for an introduction to functional analysis): suppose that f : Ω → X takes its values in

an infinite-dimensional space X. If (X, ‖ · ‖) is a normed space, one can impose that

intΩ‖f‖ dµ <∞,

but this definition may be too strong, in the sense that too few functions f satisfy it. If X has

a dual X∗, one may impose that for all x∗ ∈ X∗,∫
Ω
x∗(f) dµ <∞,

which is often a weaker condition than the one in the previous display. In case X is itself (a

subset of) the dual of a space X ′, then X ′ ⊂ X∗ and we may impose that for all x ∈ X ′,∫
Ω
f(x) dµ <∞

which is weaker than both previous displays.

Example A.4.1. Our primary interest here is in Bayesian statistics, where the prior and

posterior can be measures on a non-parametric model, giving rise to a situation like that in

remark A.4.1. Frequently, observations will lie in Rn and we consider the space of all bounded,

measurable functions on Rn, endowed with the supermum-norm. This space forms a Banach

space X ′ and P is a subset of the unit-sphere of the dual X ′∗, since X → R : f 7→ Pf satisfies

|Pf | ≤ ‖f‖, for all f ∈ X. Arguably, P should be called integrable with respect to a measure

Ξ on P, if ∣∣∣∫
P
Pf dΞ(P )

∣∣∣ <∞.
for all f ∈ X. Then, “suitable integrability” is not an issue in the definition of the posterior

mean (2.2.1), since P |f | ≤ supRn |f | = ‖f‖ < ∞ for all f ∈ X and the posterior is a

probability measure.

Theorem A.4.1. (Fubini’s theorem) State Fubini’s theorem.

Theorem A.4.2. (Radon-Nikodym theorem) Let (Ω,F ) be a measurable space and let µ, ν :

F → [0,∞] be two σ-finite measures on (Ω,F ). There exists a unique decomposition

µ = µ‖ + µ⊥,

such that νparallel � ν and µ⊥ and ν are mutually singular. Furthermore, there exists a

finite-valued, F -measurable function f : Ω→ R such that for all F ∈ F ,

µ‖(F ) =

∫
F
f dν. (A.5)

The function f is ν-almost-everywhere unique.
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The function f : Ω → R in the above theorem is called the Radon-Nikodym derivative

of µ with respect to ν. If µ is a probability distribution, then f is called the (probability)

density for µ with respect to ν. The assertion that f is “ν-almost-everywhere unique” means

that if there exists a measurable function g : Ω → R such that (A.5) holds with g replacing

f , then f = g, (ν − a.e.), i.e. f and g may differ only on a set of ν-measure equal to zero.

Through a construction involving increasing sequences of simple functions, we see that the

Radon-Nikodym theorem has the following implication.

Corollary A.4.1. Assume that the conditions for the Radon-Nikodym theorem are satisfied.

Let X : Ω→ [0,∞] be measurable and µ-integrable. Then the product Xf is ν-integrable and∫
X dµ =

∫
Xf dν.

Remark A.4.2. Integrability is not a necessary condition here, but the statement of the

corollary becomes rather less transparent if we indulge in generalization.

A.5 Existence of stochastic processes

A stochastic processes have the following broad definition.

Definition A.5.1. Let (Ω,F , P ) be a probability space, let T be an arbitrary set. A collection

of F -measurable random variables {Xt : Ω→ R : t ∈ T} is called a stochastic process indexed

by T .

The problem with the above definition is the requirement that there exists an underlying

probability space: typically, one approaches a problem that requires the use of stochastic

processes by proposing a collection of random quantities {Xt : t ∈ T}. The guarantee that

an underlying probability space (Ω,F , P ) exists on which all Xt can be realised as random

variables is then lacking so that we have not defined the stochastic process properly yet.

Kolmogorov’s existence theorem provides an explicit construction of (Ω,F , P ). Clearly, if

the Xt take their values in a measurable space space (X ,B), the obvious choice for Ω is the

collection X T in which the process takes its values. The question remains how to characterize

P and its domain F . Kolmogorov’s solution here is to assume that for any finite subset S =

{t1, . . . , tk} ⊂ T , the distribution Pt1...tk of the k-dimensional stochastic vector (Xt1 , . . . , Xtk)

is given. Since the distributions Pt1...tk are as yet unrelated and given for all finite subsets of

T , consistency requirements are implicit if they are to serve as marginals to the probability

distribution P : if two finite subsets S1, S2 ⊂ T satisfy S1 ⊂ S2, then the distribution of

{Xt : t ∈ S1} should be marginal to that of {Xt : t ∈ S2}. Similarly, permutation of the

components of the stochastic vector in the above display should be reflected in the respective

distributions as well. The requirements for consistency are formulated in two requirements

called Kolmogorov’s consistency conditions:
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(K1) Let k ≥ 1 and {t1, . . . , tk+1} ⊂ T be given. For any C ∈ σ(Bk),

Pt1...tk(C) = Pt1...tk+1
(C ×X ),

(K2) Letk ≥ 1, {t1, . . . , tk} ⊂ T and a permutation π of k elements be given. For any

A1, . . . , Ak ∈ B,

Ptπ(1)...tπ(k)(A1 × . . .×Ak) = Pt1...tk(Aπ−1(1) × . . .×Aπ−1(k)).

Theorem A.5.1. (Kolmogorov’s existence theorem)

Let a collection of random quantities {Xt : t ∈ T} be given. Suppose that for any k ≥ 1 and

all t1, . . . , tk ∈ T , the finite-dimensional marginal distributions

(Xt1 , . . . , Xtk) ∼ Pt1...tk , (A.6)

are defined and satisfy conditions (K1) and (K2). Then there exists a probability space

(Ω,F , P ) and a stochastic process {Xt : Ω → X : t ∈ T } such that all distributions of

the form (A.6) are marginal to P .

Kolmogorov’s approach to the definition and characterization of stochastic processes in

terms of finite-dimensional marginals turns out to be of great practical value: it allows one to

restrict attention to finite-dimensional marginal distributions when characterising the process.

The drawback of the construction becomes apparent only upon closer inspection of the σ-

algebra F : F is the σ-algebra generated by the cylinder sets, which implies that measurability

of events restricing an uncountable number of Xt’s simultaneously can not be guaranteed!

For instance, if T = [0,∞) and X = R, the probability that sample-paths of the process are

coninuous,

P
(
R→ R : t 7→ Xt iscontinuous

)
,

may be ill-defined because it involves an uncountable number of t’s. This is the ever-recurring

trade-off between generality and strength of a mathematical result: Kolmogorov’s existence

theorem always works but it does not give rise to a comfortably ‘large’ domain for the resulting

P : F → [0, 1].

A.6 Conditional distributions

In this section, we consider conditioning of probability measures. In first instance, we consider

straightforward conditioning on events and illustrate Bayes’ rule, but we also cover condition-

ing on σ-algebras and random variables, to arrive at the posterior distribution and Bayes’ rule

for densities.

Definition A.6.1. Let (Ω,F , P ) be a probability space and let B ∈ F be such that P (B) > 0.

For any A ∈ F , the conditional probability of the event A given event B is defined:

P (A|B) =
P (A ∩B)

P (B)
. (A.7)
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Conditional probability given B describes a set-function on F and one easily checks that

this set-function is a measure. The conditional probability measure P ( · |B) : F → [0, 1] can

be viewed as the restriction of P to F -measurable subsets of B, normalized to be a probability

measure. Definition (A.7) gives rise to a relation between P (A|B) and P (B|A) (in case both

P (A) > 0 and P (B) > 0, of course), which is called Bayes’ Rule.

Lemma A.6.1. (Bayes’ Rule)

Let (Ω,F , P ) be a probability space and let A,B ∈ F be such that P (A) > 0, P (B) > 0.

Then

P (A|B)P (B) = P (B|A)P (A).

However, being able to condition on events B of non-zero probability only is too restrictive.

Furthermore, B above is a definite event; it is desirable also to be able to discuss probabilities

conditional on events that have not been measured yet, i.e. to condition on a σ-algebra.

Definition A.6.2. Let (Ω,F , P ) be a probability space, let C be a sub-σ-algebra of F and

let X be a P -integrable random variable. The conditional expectation of X given C , denoted

E[X|C ], is a C -measurable random variable such that for all C ∈ C ,∫
C
X dP =

∫
C
E[X|C ] dP.

The condition that X be P -integrable is sufficient for the existence of E[X|C ]; E[X|C ]

is unique P -almost-surely (see theorem 10.1.1 in Dudley (1989)). Often, the σ-algebra C is

the σ-algebra σ(Z) generated by another random variable Z. In that case we denote the con-

ditional expectation by E[X|Z]. Note that conditional expectations are random themselves:

realisation occurs only when we impose Z = z.

Definition A.6.3. Let (Y ,B) be a measurable space, let (Ω,F , P ) be a probability space and

let C be a sub-σ-algebra of F . Furthermore, let Y : Ω → Y be a random variable taking

values in Y . The conditional distribution of Y given C is P -almost-surely defined as follows:

PY |C (A,ω) = E[1A|C ](ω). (A.8)

Although seemingly innocuous, the fact that conditional expectations are defined only

P -almost-surely poses a rather subtle problem: for every A ∈ B there exists an A-dependent

null-set on which PY |C (A, ·) is not defined. This is not a problem if we are interested only

in A (or in a countable number of sets). But usually, we wish to view PY |C as a probability

measure, that is to say, it must be well-defined as a map on the σ-algebra B almost-surely.

Since most σ-algebras are uncountable, there is no guarantee that the corresponding union

of exceptional null-sets has measure zero as well. This means that definition (A.8) is not

sufficient for our purposes: the property that the conditional distribution is well-defined as a

map is called regularity .
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Definition A.6.4. Under the conditions of definition A.6.3, we say that the conditional

distribution ΠY |C is regular, if there exists a set E ∈ F such that P (E) = 0 and for all

ω ∈ Ω \ E, ΠY |C ( · , ω) satisfies A.8 for all A ∈ B.

Definition A.6.5. A topological space (S,T ) is said to be a Polish space if T is metrizable

with metric d and (S, d) is complete and separable.

Polish spaces appear in many subjects in probability theory, most notably in a theorem

that guarantees that conditional distributions are regular.

Theorem A.6.1. (regular conditional distributions) Let Y be a Polish space and denote its

Borel σ-algebra by B. Furthermore let (Ω,F , P ) be a probability space and Y : Ω → Y a

random variable taking values in Y . Let C be a sub-σ-algebra of F . Then a conditional

distribution [MORE MORE]

Proof For a proof of this theorem, the reader is referred to Dudley (1989) [29], theo-

rem 10.2.2). �

In Bayesian context we can be more specific regarding the sub-σ-algebra C : since Ω =

X ×Θ (so that ω = (x, θ)) and we condition on θ, we choose C = {X ×G : G ∈ G }.
Note also that due to the special choice for C , C -measurability implies that ΠY |C ( .· , (y, θ))

depends on θ alone. Hence we denote it ΠY |ϑ : B ×Θ→ [0, 1].

Lemma A.6.2. (Bayes’ Rule for densities)

State Bayes’ rule for densities.

A.7 Convergence in spaces of probability measures

Let M(R,B) denote the space of all probability measures on R with Borel σ-algebra B.

Definition A.7.1. (topology of weak convergence)

Let (Qn)n≥1 and Q in M(R, scrB) be given. Denote the set of points in R where R→ [0, 1] :

t 7→ Q(−∞, t] is continuous by C. We say that Qn converges weakly to Q if, for all t ∈ C,

Qn(−∞, t]→ Q(−∞, t].

Weak convergence has serveral equivalent definitions. The following lemma, known as the

Portmanteau lemma (from the French word for coat-rack),

Lemma A.7.1. Let (Qn)n≥1 and Q in M(R, scrB) be given. The following are equivalent:

(i) Qn converges weakly to Q.

(ii) For every bounded, continuous f : R→ R, Qnf → Qf .

(iii) For every bounded, Lipschitz g : R→ R, Qng → Qg.

(iv) For all non-negative, continuous h : R→ R, lim infn→∞Qnf ≥ Qf .
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(v) For every open set F ⊂ R, lim infn→∞Qn(F ) ≥ Q(F ).

(vi) For every closed set G ⊂ R, lim supn→∞Qn(G) ≤ Q(G).

(vii) For every Borel set B such that Q(δB) = 0, Qn(B)→ Q(B).

In (vii) above, δB denotes the boundary of B, which is defined as the closure of B minus

the interior of B.

Lemma A.7.2. When endowed with the topology of weak convergence, the space M(R,B) is

Polish, i.e. complete, separable and metric.

Definition A.7.2. (topology of pointwise convergence)

Let (Qn)n≥1 and Q in M(R, scrB) be given. We say that Qn converges pointwise to Q if, for

all B ∈ B, Qn(B)→ Q(B).

Definition A.7.3. (topology of total variation)

Let (Qn)n≥1 and Q in M(R, scrB) be given. We say that Qn converges in total variation to

Q if,

sup
B∈B

∣∣Qn(B)−Q(B)
∣∣→ 0.

Lemma A.7.3. When endowed with the topology of total variation, the space M(R,B) is a

Polish subspace of the Banach space of all signed measures on (R,B).
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alternative, see aternative hypothesis27
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Bayes’ billiard, 17
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bootstrap, 53

classification, 28, 43
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conditional distribution, 14, 97

regular, 14, 98

conditional expectation, 97

conditional independence, 18

conditional probability, 96

confidence level, 32, see lvel, confidence32

confidence region, 32

conjugate family, 59, 75

consistency conditions, 95

continuity theorem, 92

convergence in total variation, 99

counting measure, 4, 92
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decision principle
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decision rule, 38
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randomized, 40

decision-space, 38

density, see pobability density95

Dirichlet distribution, 69

Dirichlet family, 70

Dirichlet process, 71

distribution
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empirical Bayes, 66

empirical expectation, 11

empirical process, 11
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Shannon, 58
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maximum-likelihood, 6, 11

minimax, 41

non-parametric ML, 76

penalized maximum-likelihood, 27

small-ball, 25

exchangeability, 20

expectation

empirical, 5

exponential family, 61

canonical representation, 61

of full rank, 61

feature vector, 44

hyperparameter, 63

hyperprior, 63

hypothesis, 27

identifiability, 2

inadmissible, 39

inference, 38

infinite divisibility, 70

integrability, 93

lemma

First Borel-Cantelli, 92

Second Borel-Cantelli, 93

level, 28, 33

confidence, 32

significance, 28

likelihood, 7

likelihood principle, 6

limit distribution, 5

location, 22

loss, see loss-function

loss-function, 25, 38

L2-, 41

measure

atomic, 92

delta, 92

Dirac, 92

misclassification, 44

ML-II estimator, 68

MLE, see etimator, maximum-likelihood6

model, 2
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full non-parametric, 4
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identifiable, 2

mis-specified, 3

non-parametric, 4
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parameterized, 2

parametric, 3
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model selection, 66, 67

norm

total-variation, 6, 93

NPMLE, see nn-parametric MLE76

null

hypothesis, 27

odds ratio

posterior, 35

prior, 35

optimality criteria, 6

over-fitting, 67

parameter space, 2

point-estimator, see etimator4

pointwise convergence, 99

Polish space, 98

Portmanteau lemma, 98

posterior, 8, 15

posterior expectation, 23

posterior mean, 23

parametric, 23

posterior median, 25

posterior mode, 25
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sequence, 31

power-set, 4

powerset, 92

predictive distribution

posterior, 19

prior, 19, 75

preferred

Bayes, 42

minimax, 39

prior, 8, 20

conjugate, 60

Dirichlet process, 21

improper, 54

informative, 50

Jeffreys, 56

non-informative, 53

objective, 53

reference, 58

subjective, 50

subjectivist, 15

probability density, 95

probability density function, 2

Radon-Nikodym derivative, 95

rate of convergence, 5

regularity, 14, 20, 97

risk

Bayes, 42

minimax, 39

risk function

Bayesian, 42

sample-average, 5, 11

sample-size, 5

samplespace, 1, 38

significance level, see lvel28, see lvel, sig-

nificance28

asymptotic, 29

simple

hypothesis, 28

simplex, 4

state, 38

state-space, 38

statistic, 5, 32

statistical decision theory, 38

statistics

inferential, 38

stochastic process, 95

support, 16

test

asymptotic, 30

more powerful, 31

uniformly more powerful, 31

uniformly most powerful, 29, 31

test sequence, 30

test-statistic, 28

theorem

central limit, 5

De Finetti’s, 93

Fubini’s, 94

Glivenko-Cantelli, 6

Minimax, 40

Radon-Nikodym, 94

Ulam’s, 93

type-I error, 28

type-II error, 28

utility, see utility-function

utility-function, 38

Weak convergence, 98

zero-one law, 93
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Cover Illustration

The figure on the front cover originates from Bayes (1763), An essay towards solving a problem in the doctrine of

chances, (see [4] in the bibliography), and depicts what is nowadays known as Bayes’ Billiard. To demonstrate

the uses of conditional probabilities and Bayes’ Rule, Bayes came up with the following example: one white ball

and n red balls are placed on a billiard table of length normalized to 1, at independent, uniformly distributed

positions. Conditional on the distance X of the white ball to one end of the table, the probability of finding

exactly k of the n red balls closer to that end, is easily seen to be:

P
(
k

∣∣ X = x
)

=
n!

k! (n− k)!
xk(1− x)n−k.

One finds the probability that k red balls are closer than the white, by integrating with respect to the position

of the white ball:

P ( k ) =
1

n+ 1
.

Application of Bayes’ Rule then gives rise to a Beta-distribution B(k + 1, n − k + 1) for the position of the

white ball conditional on the number k of red balls that are closer. The density:

βk+1,n−k+1(x) =
(n+ 1)!

k! (n− k)!
xk(1− x)n−k,

for this Beta-distribution is the curve drawn at the bottom of the billiard in the illustration. (See example 2.1.2)


