
Appendix A

Measure theory

In this appendix we collect some important notions from measure theory. The goal is not

to present a self-contained presentation, but rather to establish the basic definitions and

theorems from the theory for reference in the main text. As such, the presentation omits

certain existence theorems and many of the proofs of other theorems (although references are

given). The focus is strongly on finite (e.g. probability-) measures, in places at the expense

of generality. Some background in elementary set-theory and analysis is required. As a

comprehensive reference, we note Kingman and Taylor (1966) [52], alternatives being Dudley

(1989) [29] and Billingsley (1986) [15].

A.1 Sets and sigma-algebras

Rough setup: set operations, monotony of sequences of subsets, set-limits, sigma-algebra’s,

measurable spaces, set-functions, product spaces.

Definition A.1.1. A measurable space (Ω,F ) consists of a set Ω and a σ-algebra F of

subsets of Ω.

A.2 Measures

Rough setup: set-functions, (signed) measures, probability measures, sigma-additivity, sigma-

finiteness

Theorem A.2.1. Let (Ω,F ) be a measurable space with measure µ : F → [0,∞]. Then,

(i) for any monotone decreasing sequence (Fn)n≥1 in F such that µ(Fn) < ∞ for some n,

lim
n→∞

µ(Fn) = µ
� ∞�

n=1

Fn

�
, (A.1)
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(ii) for any monotone increasing sequence (Gn)n≥1 in F ,

lim
n→∞

µ(Gn) = µ
� ∞�

n=1

Gn

�
, (A.2)

Theorem A.2.1) is sometimes referred to as the continuity theorem for measures, because

if we view ∩nFn as the monotone limit limFn, (A.1) can be read as limn µ(Fn) = µ(limn Fn),

expressing continuity from below. Similarly, (A.2) expresses continuity from above. Note that

theorem A.2.1 does not guarantee continuity for arbitrary sequences in F . It should also be

noted that theorem A.2.1) is presented here in simplified form: the full theorem states that

continuity from below is equivalent to σ-additivity of µ (for a more comprehensive formulation

and a proof of theorem A.2.1, see [52], theorem 3.2).

Example A.2.1. Let Ω be a discrete set and let F be the powerset 2Ω of Ω, i.e. F is the

collection of all subsets of Ω. The counting measure n : F → [0,∞] on (Ω,F ) is defined

simply to count the number n(F ) of points in F ⊂ Ω. If Ω contains a finite number of points,

n is a finite measure; if Ω contains a (countably) infinite number of points, n is σ-finite. The

counting measure is σ-additive.

Example A.2.2. We consider R with any σ-algebra F , let x ∈ R be given and define the

measure δx : F → [0, 1] by

δx(A) = 1{x ∈ A},

for any A ∈ F . The probability measure δx is called the Dirac measure (or delta measure, or

atomic measure) degenerate at x and it concentrates all its mass in the point x. Clearly, δx

is finite and σ-additive. Convex combinations of Dirac measures, i.e. measures of the form

P =
m�

j=1

αjδxj ,

for some m ≥ 1 with α1, . . . , αm such that αj ≥ 0 and
�m

j=1 αj = 1, can be used as a statistical

model for an observation X that take values in a discrete (but unknown) subset {x1, . . . , xm}
of R. The resulting model (which we denote D(R,B) for reference) is not dominated.

Often, one has a sequence of events (An)n≥1 and one is interested in the probability of a

limiting event A, for example the event that An occurs infinitely often. The following three

lemmas pertain to this situation.

Lemma A.2.1. (First Borel-Cantelli lemma)

Let (Ω,F , P ) be a probability space and let (An)n≥1 ⊂ F be given and denote A = lim supAn.

If �

n≥1

P (An) < ∞,

then P (A) = 0.
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In the above lemma, the sequence (An)n≥1 is general. To draw the converse conclusion,

the sequence needs to exist of independent events.

Lemma A.2.2. (Second Borel-Cantelli lemma)

Let (Ω,F , P ) be a probability space and let (An)n≥1 ⊂ F be independent and denote A =

lim supAn. If
�

n≥1

P (An) = ∞,

then P (A) = 1.

Together, the Borel-Cantelli lemmas assert that for a sequence of independent events

(An)n≥1, P (A) equals zero or one, according as
�

n P (An) converges or diverges. As such,

this corollary is known as a zero-one law , of which there are many in probability theory.

exchangability, De Finetti’s theorem

Theorem A.2.2. (De Finetti’s theorem) State De Finetti’s theorem.

Theorem A.2.3. (Ulam’s theorem) State Ulam’s theorem.

Definition A.2.1. Let (Y ,B) be a measurable space. Given a set-function µ : B → [0,∞],

the total variation total-variation norm of µ is defined:

�µ�TV = sup
B∈B

|µ(B)|. (A.3)

Lemma A.2.3. Let (Y ,B) be a measurable space. The collection of all signed measures on

Y forms a linear space and total variation is a norm on this space.

A.3 Measurability and random variables

Rough setup: measurability, monotone class theorem, simple functions, random variables,

approximating sequences.

A.4 Integration

Rough setup: the definition of the integral, its basic properties, limit-theorems (Fatou, dom-

inated convergence) and Lp-spaces.

Definition A.4.1. Let (Ω,F , µ) be a measure space. A real-valued measurable function

f : Ω → R is said to be µ-integrable if

�

O
mega|f | dµ < ∞. (A.4)
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Remark A.4.1. If f is a stochastic vector taking values in Rd, the above definition of inte-

grability is extended naturally by imposing (A.4) on each of the component functions. This

extension is more problematic in infinite-dimensional spaces. However, various generaliza-

tions can be found in an approach motivated by functional analysis (see Megginson (1998)

[67] for an introduction to functional analysis): suppose that f : Ω → X takes its values in

an infinite-dimensional space X. If (X, � · �) is a normed space, one can impose that

intΩ�f� dµ < ∞,

but this definition may be too strong, in the sense that too few functions f satisfy it. If X has

a dual X∗, one may impose that for all x∗ ∈ X∗,
�

Ω
x∗(f) dµ < ∞,

which is often a weaker condition than the one in the previous display. In case X is itself (a

subset of) the dual of a space X �, then X � ⊂ X∗ and we may impose that for all x ∈ X �,
�

Ω
f(x) dµ < ∞

which is weaker than both previous displays.

Example A.4.1. Our primary interest here is in Bayesian statistics, where the prior and

posterior can be measures on a non-parametric model, giving rise to a situation like that in

remark A.4.1. Frequently, observations will lie in Rn and we consider the space of all bounded,

measurable functions on Rn, endowed with the supermum-norm. This space forms a Banach

space X � and P is a subset of the unit-sphere of the dual X �∗, since X → R : f �→ Pf satisfies

|Pf | ≤ �f�, for all f ∈ X. Arguably, P should be called integrable with respect to a measure

Ξ on P, if ���
�

P

Pf dΞ(P )
��� < ∞.

for all f ∈ X. Then, “suitable integrability” is not an issue in the definition of the posterior

mean (2.2.1), since P |f | ≤ supRn |f | = �f� < ∞ for all f ∈ X and the posterior is a

probability measure.

Theorem A.4.1. (Fubini’s theorem) State Fubini’s theorem.

Theorem A.4.2. (Radon-Nikodym theorem) Let (Ω,F ) be a measurable space and let µ, ν :

F → [0,∞] be two σ-finite measures on (Ω,F ). There exists a unique decomposition

µ = µ� + µ⊥,

such that νparallel � ν and µ⊥ and ν are mutually singular. Furthermore, there exists a

finite-valued, F -measurable function f : Ω → R such that for all F ∈ F ,

µ�(F ) =

�

F
f dν. (A.5)

The function f is ν-almost-everywhere unique.
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The function f : Ω → R in the above theorem is called the Radon-Nikodym derivative

of µ with respect to ν. If µ is a probability distribution, then f is called the (probability)

density for µ with respect to ν. The assertion that f is “ν-almost-everywhere unique” means

that if there exists a measurable function g : Ω → R such that (A.5) holds with g replacing

f , then f = g, (ν − a.e.), i.e. f and g may differ only on a set of ν-measure equal to zero.

Through a construction involving increasing sequences of simple functions, we see that the

Radon-Nikodym theorem has the following implication.

Corollary A.4.1. Assume that the conditions for the Radon-Nikodym theorem are satisfied.

Let X : Ω → [0,∞] be measurable and µ-integrable. Then the product Xf is ν-integrable and

�
X dµ =

�
Xf dν.

Remark A.4.2. Integrability is not a necessary condition here, but the statement of the

corollary becomes rather less transparent if we indulge in generalization.

A.5 Existence of stochastic processes

A stochastic processes have the following broad definition.

Definition A.5.1. Let (Ω,F , P ) be a probability space, let T be an arbitrary set. A collection

of F -measurable random variables {Xt : Ω → R : t ∈ T} is called a stochastic process indexed

by T .

The problem with the above definition is the requirement that there exists an underlying

probability space: typically, one approaches a problem that requires the use of stochastic

processes by proposing a collection of random quantities {Xt : t ∈ T}. The guarantee that

an underlying probability space (Ω,F , P ) exists on which all Xt can be realised as random

variables is then lacking so that we have not defined the stochastic process properly yet.

Kolmogorov’s existence theorem provides an explicit construction of (Ω,F , P ). Clearly, if

the Xt take their values in a measurable space space (X ,B), the obvious choice for Ω is the

collection X T in which the process takes its values. The question remains how to characterize

P and its domain F . Kolmogorov’s solution here is to assume that for any finite subset S =

{t1, . . . , tk} ⊂ T , the distribution Pt1...tk of the k-dimensional stochastic vector (Xt1 , . . . , Xtk)

is given. Since the distributions Pt1...tk are as yet unrelated and given for all finite subsets of

T , consistency requirements are implicit if they are to serve as marginals to the probability

distribution P : if two finite subsets S1, S2 ⊂ T satisfy S1 ⊂ S2, then the distribution of

{Xt : t ∈ S1} should be marginal to that of {Xt : t ∈ S2}. Similarly, permutation of the

components of the stochastic vector in the above display should be reflected in the respective

distributions as well. The requirements for consistency are formulated in two requirements

called Kolmogorov’s consistency conditions :
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(K1) Let k ≥ 1 and {t1, . . . , tk+1} ⊂ T be given. For any C ∈ σ(Bk),

Pt1...tk(C) = Pt1...tk+1(C × X ),

(K2) Letk ≥ 1, {t1, . . . , tk} ⊂ T and a permutation π of k elements be given. For any

A1, . . . , Ak ∈ B,

Ptπ(1)...tπ(k)
(A1 × . . .×Ak) = Pt1...tk(Aπ−1(1) × . . .×Aπ−1(k)).

Theorem A.5.1. (Kolmogorov’s existence theorem)

Let a collection of random quantities {Xt : t ∈ T} be given. Suppose that for any k ≥ 1 and

all t1, . . . , tk ∈ T , the finite-dimensional marginal distributions

(Xt1 , . . . , Xtk) ∼ Pt1...tk , (A.6)

are defined and satisfy conditions (K1) and (K2). Then there exists a probability space

(Ω,F , P ) and a stochastic process {Xt : Ω → X : t ∈ T } such that all distributions of

the form (A.6) are marginal to P .

Kolmogorov’s approach to the definition and characterization of stochastic processes in

terms of finite-dimensional marginals turns out to be of great practical value: it allows one to

restrict attention to finite-dimensional marginal distributions when characterising the process.

The drawback of the construction becomes apparent only upon closer inspection of the σ-

algebra F : F is the σ-algebra generated by the cylinder sets, which implies that measurability

of events restricing an uncountable number of Xt’s simultaneously can not be guaranteed!

For instance, if T = [0,∞) and X = R, the probability that sample-paths of the process are

coninuous,

P
�
R → R : t �→ Xt iscontinuous

�
,

may be ill-defined because it involves an uncountable number of t’s. This is the ever-recurring

trade-off between generality and strength of a mathematical result: Kolmogorov’s existence

theorem always works but it does not give rise to a comfortably ‘large’ domain for the resulting

P : F → [0, 1].

A.6 Conditional distributions

In this section, we consider conditioning of probability measures. In first instance, we consider

straightforward conditioning on events and illustrate Bayes’ rule, but we also cover condition-

ing on σ-algebras and random variables, to arrive at the posterior distribution and Bayes’ rule

for densities.

Definition A.6.1. Let (Ω,F , P ) be a probability space and let B ∈ F be such that P (B) > 0.

For any A ∈ F , the conditional probability of the event A given event B is defined:

P (A|B) =
P (A ∩B)

P (B)
. (A.7)
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Conditional probability given B describes a set-function on F and one easily checks that

this set-function is a measure. The conditional probability measure P ( · |B) : F → [0, 1] can

be viewed as the restriction of P to F -measurable subsets of B, normalized to be a probability

measure. Definition (A.7) gives rise to a relation between P (A|B) and P (B|A) (in case both

P (A) > 0 and P (B) > 0, of course), which is called Bayes’ Rule.

Lemma A.6.1. (Bayes’ Rule)

Let (Ω,F , P ) be a probability space and let A,B ∈ F be such that P (A) > 0, P (B) > 0.

Then

P (A|B)P (B) = P (B|A)P (A).

However, being able to condition on events B of non-zero probability only is too restrictive.

Furthermore, B above is a definite event; it is desirable also to be able to discuss probabilities

conditional on events that have not been measured yet, i.e. to condition on a σ-algebra.

Definition A.6.2. Let (Ω,F , P ) be a probability space, let C be a sub-σ-algebra of F and

let X be a P -integrable random variable. The conditional expectation of X given C , denoted

E[X|C ], is a C -measurable random variable such that for all C ∈ C ,

�

C
X dP =

�

C
E[X|C ] dP.

The condition that X be P -integrable is sufficient for the existence of E[X|C ]; E[X|C ]

is unique P -almost-surely (see theorem 10.1.1 in Dudley (1989)). Often, the σ-algebra C is

the σ-algebra σ(Z) generated by another random variable Z. In that case we denote the con-

ditional expectation by E[X|Z]. Note that conditional expectations are random themselves:

realisation occurs only when we impose Z = z.

Definition A.6.3. Let (Y ,B) be a measurable space, let (Ω,F , P ) be a probability space and

let C be a sub-σ-algebra of F . Furthermore, let Y : Ω → Y be a random variable taking

values in Y . The conditional distribution of Y given C is P -almost-surely defined as follows:

PY |C (A,ω) = E[1A|C ](ω). (A.8)

Although seemingly innocuous, the fact that conditional expectations are defined only

P -almost-surely poses a rather subtle problem: for every A ∈ B there exists an A-dependent

null-set on which PY |C (A, ·) is not defined. This is not a problem if we are interested only

in A (or in a countable number of sets). But usually, we wish to view PY |C as a probability

measure, that is to say, it must be well-defined as a map on the σ-algebra B almost-surely.

Since most σ-algebras are uncountable, there is no guarantee that the corresponding union

of exceptional null-sets has measure zero as well. This means that definition (A.8) is not

sufficient for our purposes: the property that the conditional distribution is well-defined as a

map is called regularity .
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Definition A.6.4. Under the conditions of definition A.6.3, we say that the conditional

distribution ΠY |C is regular, if there exists a set E ∈ F such that P (E) = 0 and for all

ω ∈ Ω \ E, ΠY |C ( · , ω) satisfies A.8 for all A ∈ B.

Definition A.6.5. A topological space (S,T ) is said to be a Polish space if T is metrizable

with metric d and (S, d) is complete and separable.

Polish spaces appear in many subjects in probability theory, most notably in a theorem

that guarantees that conditional distributions are regular.

Theorem A.6.1. (regular conditional distributions) Let Y be a Polish space and denote its

Borel σ-algebra by B. Furthermore let (Ω,F , P ) be a probability space and Y : Ω → Y a

random variable taking values in Y . Let C be a sub-σ-algebra of F . Then a conditional

distribution [MORE MORE]

Proof For a proof of this theorem, the reader is referred to Dudley (1989) [29], theo-

rem 10.2.2). �

In Bayesian context we can be more specific regarding the sub-σ-algebra C : since Ω =

X ×Θ (so that ω = (x, θ)) and we condition on θ, we choose C = {X ×G : G ∈ G }.
Note also that due to the special choice for C , C -measurability implies that ΠY |C ( .· , (y, θ))

depends on θ alone. Hence we denote it ΠY |ϑ : B ×Θ → [0, 1].

Lemma A.6.2. (Bayes’ Rule for densities)

State Bayes’ rule for densities.

A.7 Convergence in spaces of probability measures

Let M(R,B) denote the space of all probability measures on R with Borel σ-algebra B.

Definition A.7.1. (topology of weak convergence)

Let (Qn)n≥1 and Q in M(R, scrB) be given. Denote the set of points in R where R → [0, 1] :

t �→ Q(−∞, t] is continuous by C. We say that Qn converges weakly to Q if, for all t ∈ C,

Qn(−∞, t] → Q(−∞, t].

Weak convergence has serveral equivalent definitions. The following lemma, known as the

Portmanteau lemma (from the French word for coat-rack),

Lemma A.7.1. Let (Qn)n≥1 and Q in M(R, scrB) be given. The following are equivalent:

(i) Qn converges weakly to Q.

(ii) For every bounded, continuous f : R → R, Qnf → Qf .

(iii) For every bounded, Lipschitz g : R → R, Qng → Qg.

(iv) For all non-negative, continuous h : R → R, lim infn→∞Qnf ≥ Qf .
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(v) For every open set F ⊂ R, lim infn→∞Qn(F ) ≥ Q(F ).

(vi) For every closed set G ⊂ R, lim supn→∞Qn(G) ≤ Q(G).

(vii) For every Borel set B such that Q(δB) = 0, Qn(B) → Q(B).

In (vii) above, δB denotes the boundary of B, which is defined as the closure of B minus

the interior of B.

Lemma A.7.2. When endowed with the topology of weak convergence, the space M(R,B) is

Polish, i.e. complete, separable and metric.

Definition A.7.2. (topology of pointwise convergence)

Let (Qn)n≥1 and Q in M(R, scrB) be given. We say that Qn converges pointwise to Q if, for

all B ∈ B, Qn(B) → Q(B).

Definition A.7.3. (topology of total variation)

Let (Qn)n≥1 and Q in M(R, scrB) be given. We say that Qn converges in total variation to

Q if,

sup
B∈B

��Qn(B)−Q(B)
�� → 0.

Lemma A.7.3. When endowed with the topology of total variation, the space M(R,B) is a

Polish subspace of the Banach space of all signed measures on (R,B).



100 Measure theory



Bibliography

[1] M. Alpert and H. Raiffa, A progress report on the training of probability assessors, In Judge-

ment under uncertainty: heuristics and biases, eds. D. Kahneman, P. Slovic and A. Tversky,

Cambridge University Press, Cambridge (1982).

[2] S. Amari, Differential-geometrical methods in statistics, Lecture Notes in Statistics No. 28,

Springer Verlag, Berlin (1990).

[3] M. Bayarri and J. Berger, The interplay of Bayesian and frequentist analysis, Preprint (2004).

[4] T. Bayes, An essay towards solving a problem in the doctrine of chances, Phil. Trans. Roy. Soc.

53 (1763), 370–418.
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conditional distribution, 14, 97
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conditional independence, 18
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empirical expectation, 11
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maximum-likelihood, 6, 11

minimax, 41

non-parametric ML, 76

penalized maximum-likelihood, 27

small-ball, 25

exchangeability, 20

expectation

empirical, 5

exponential family, 61

canonical representation, 61

of full rank, 61

feature vector, 44

hyperparameter, 63

hyperprior, 63
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identifiability, 2
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inference, 38

infinite divisibility, 70
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First Borel-Cantelli, 92

Second Borel-Cantelli, 93

level, 28, 33
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significance, 28

likelihood, 7

likelihood principle, 6

limit distribution, 5
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loss, see loss-function
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misclassification, 44

ML-II estimator, 68
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non-parametric, 4
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parameterized, 2
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model selection, 66, 67

norm

total-variation, 6, 93

NPMLE, see nn-parametric MLE76
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odds ratio

posterior, 35
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optimality criteria, 6

over-fitting, 67

parameter space, 2

point-estimator, see etimator4

pointwise convergence, 99

Polish space, 98

Portmanteau lemma, 98

posterior, 8, 15

posterior expectation, 23

posterior mean, 23
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sequence, 31

power-set, 4

powerset, 92

predictive distribution

posterior, 19

prior, 19, 75

preferred

Bayes, 42

minimax, 39
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conjugate, 60

Dirichlet process, 21

improper, 54

informative, 50

Jeffreys, 56

non-informative, 53

objective, 53

reference, 58

subjective, 50

subjectivist, 15

probability density, 95

probability density function, 2

Radon-Nikodym derivative, 95

rate of convergence, 5

regularity, 14, 20, 97

risk

Bayes, 42

minimax, 39

risk function

Bayesian, 42

sample-average, 5, 11

sample-size, 5

samplespace, 1, 38

significance level, see lvel28, see lvel, sig-

nificance28

asymptotic, 29

simple

hypothesis, 28

simplex, 4

state, 38

state-space, 38

statistic, 5, 32

statistical decision theory, 38

statistics

inferential, 38

stochastic process, 95

support, 16

test

asymptotic, 30

more powerful, 31

uniformly more powerful, 31

uniformly most powerful, 29, 31

test sequence, 30

test-statistic, 28

theorem

central limit, 5

De Finetti’s, 93

Fubini’s, 94

Glivenko-Cantelli, 6

Minimax, 40

Radon-Nikodym, 94

Ulam’s, 93

type-I error, 28

type-II error, 28

utility, see utility-function

utility-function, 38

Weak convergence, 98

zero-one law, 93
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Cover Illustration

The figure on the front cover originates from Bayes (1763), An essay towards solving a problem in the doctrine of

chances, (see [4] in the bibliography), and depicts what is nowadays known as Bayes’ Billiard. To demonstrate

the uses of conditional probabilities and Bayes’ Rule, Bayes came up with the following example: one white ball

and n red balls are placed on a billiard table of length normalized to 1, at independent, uniformly distributed

positions. Conditional on the distance X of the white ball to one end of the table, the probability of finding

exactly k of the n red balls closer to that end, is easily seen to be:

P
�
k

�� X = x
�
=

n!
k! (n− k)!

xk(1− x)n−k.

One finds the probability that k red balls are closer than the white, by integrating with respect to the position

of the white ball:

P ( k ) =
1

n+ 1
.

Application of Bayes’ Rule then gives rise to a Beta-distribution B(k + 1, n − k + 1) for the position of the

white ball conditional on the number k of red balls that are closer. The density:

βk+1,n−k+1(x) =
(n+ 1)!

k! (n− k)!
xk(1− x)n−k,

for this Beta-distribution is the curve drawn at the bottom of the billiard in the illustration. (See example 2.1.2)


