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Advanced Ruin Theory: generalities

˝ Scope-wise very close to earlier course Queues and Lévy Fluctuation
Theory.

˝ Will be using lecture notes The Cramér-Lundberg model and its
variants — a queueing perspective by M. Mandjes and O. Boxma.

˝ You have been sent draft of the book. Any comments are welcome,
preferably by email. Publication in a few months.

˝ Twelve classes, roughly one per chapter.
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Advanced Ruin Theory: practicalities

˝ Three homework sets. (Not in pairs.)
˝ Late May or in June: oral exam.
˝ Final grade average of the two individual grades.
˝ I’ll use Datanose for sending out messages.
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Advanced Ruin Theory: scope

˝ Risk process: models reserve level of insurance firm.
˝ Interested in probability of hitting 0: bankruptcy of insurance firm.
˝ Basic variant is Cramér-Lundberg model, but many (sophisticated)

variants possible.
˝ Although we tell the story along the lines of risk theory, the material

has a substantially broader applicability: extreme values of
stochastic processes.

˝ Direct connection with queueing theory.
˝ In earlier course Queues and Lévy Fluctuation Theory we considered

slightly broader class of processes, but derived slightly less explicit
results.
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CHAPTER I: CRAMÉR-LUNDBERG MODEL
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Base model: Cramér-Lundberg

Setting considered:
˝ In CL model, clients of insurance firm generate independent and

identically distributed (i.i.d.) claims, which arrive according to a
Poisson process.

˝ Insurance firm receives premiums at constant rate.
˝ Key object: ruin probability, i.e., probability that for a given initial

reserve, reserve level drops below zero.
˝ Two flavors: all-time ruin probability (ruin over an infinite time

horizon) and time-dependent ruin probability (ruin before a given
time).
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Base model: Cramér-Lundberg

Duality with queueing:
˝ We often work with net cumulative claim process: cumulative

amount of claimed money, decreased by the premiums earned.
˝ Insurance firm is ruined when net cumulative claim process exceeds

the initial reserve.
˝ Consequence: ruin can be written in terms of the running maximum

process (corresponding to net cumulative claim process) exceeding a
given threshold (i.e., the initial reserve).

˝ Duality relation between event of ruin in CL model, and event of a
workload threshold being exceeded in related M/G/1 queueing
model.
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Model description
˝ Claims arrive according to Poisson process with rate λ ą 0. Nptq,

number of claims in r0, ts, is Poisson with mean λt.
˝ Claims form sequence of i.i.d. random variables B1,B2, . . .,

distributed as generic non-negative random variable B with
Laplace-Stieltjes transform (LST) given by

bpαq :“ E e´αB “

ż

r0,8q

e´αt PpB P dtq.

˝ Clients generate premiums at constant rate r ą 0.
˝ Initial reserve level is u ą 0.

Until ruin, reserve level is given by (empty sum being defined as 0)

Xuptq :“ u ` rt ´

Nptq
ÿ

i“1

Bi .
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Ruin probabilities

First objective: all-time ruin probability, for initial reserve level u, i.e.,
probability of Xuptq ever dropping below 0:

ppuq :“ PpDs ě 0 : Xupsq ď 0q.

Second objective: time-dependent ruin probability, for initial reserve level
u, i.e., probability of Xuptq dropping below 0 before t:

ppu, tq :“ PpDs P r0, ts : Xupsq ď 0q.
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Net-profit condition

˝ All-time ruin probability ppuq is trivially 1 if net-profit condition
λEB ă r is violated.

˝ Observe: λEB is expected claimed amount per time unit, while r is
the insurer’s income per time unit.

˝ Time-dependent ruin probability ppu, tq is worth studying regardless
of whether or not net-profit condition holds.
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Working with transforms
˝ Only in exceptional cases ppuq and ppu, tq allow explicit expression.
˝ Remedy: work with transforms, i.e.,

πpαq :“

ż 8

0
e´αuppuq du.

˝ Time-dependent ruin: exponentially distributed time horizon
(‘killing’). Concretely, with Tβ exponentially distributed time with
mean β´1, consider transform of pp¨,Tβq. Thus, focus on double
transform

πpα, βq :“

ż 8

0
e´αuppu,Tβq du “

ż 8

0

ż 8

0
β e´αu´βtppu, tq du dt.

˝ Abelian theorem: πpαq “ limβÓ0 πpα, βq. Hence: it suffices to focus
on evaluating πpα, βq only.
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Transform of running maximum

Define the ‘net cumulative claim process’ and corresponding running
maximum process:

Y ptq :“

Nptq
ÿ

i“1

Bi ´ rt, Ȳ ptq :“ sup
sPr0,ts

Y psq.

Y ptq: compound Poisson process with drift.

Clearly,
ppuq “ PpȲ p8q ě uq, ppu, tq “ PpȲ ptq ě uq.

Conclude: probabilities ppuq and ppu, tq are complementary cumulative
distribution functions of random variables Ȳ p8q and Ȳ ptq, respectively.
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Transform of running maximum, ctd.

Consider

ϱpα, βq :“ E e´αȲ pTβq “

ż 8

0
e´αu PpȲ pTβq P duq.

Integration by parts:

ϱpα, βq “ ´

ż 8

0
e´αu dPpȲ pTβq ě uq

“ ´e´αu PpȲ pTβq ě uq

ˇ

ˇ

ˇ

ˇ

ˇ

8

u“0

´ α

ż 8

0
e´αu PpȲ pTβq ě uq du

“ 1 ´ α

ż 8

0
e´αu ppu,Tβq du “ 1 ´ απpα, βq.

Hence: when aiming at computing πpα, βq, we can equivalently compute
ϱpα, βq: these two double transforms uniquely define one another.
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Duality with M/G/1 queue

˝ M/G/1 queue: reservoir at which i.i.d. jobs (distributed as a random
variable B) arrive according to a Poisson process with rate λ ą 0,
drained at rate r ą 0.

˝ Qptq: workload in this system. Can be seen as net input process
Y ptq truncated at zero (thus preventing storage level from becoming
negative). Assume Qp0q “ 0.
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Duality with M/G/1 queue, ctd.
Define the running minimum process by

Y ptq :“ inf
sPr0,ts

Y psq.

t

Y ptq

t

Qptq

Figure: Net cumulative claim process Y ptq (left panel) and workload process
Qptq (right panel) for compound Poisson process. In left panel, corresponding
running minimum process Y ptq is depicted by dotted lines.
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Duality with M/G/1 queue, ctd.

From figure:
Qptq “ Y ptq ´ Y ptq.

In addition, relying on time-reversibility argument,

Y ptq ´ Y ptq “ Y ptq ´ inf
sPr0,ts

Y psq “ sup
sPr0,ts

pY ptq ´ Y psqq

d
“ sup

sPr0,ts

Y psq “ Ȳ ptq,

with ‘ d“’ denoting equality in distribution.

Conclude: Ȳ ptq has same distribution as Qptq (‘duality’).
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Four methods to compute transform

˝ Method 1: use ruin model. Idea: condition on first event (either a
claim arrival or having reached the time horizon).

˝ Method 2: use both ruin and queueing model. Idea: write running
maximum as the sum of a geometric number of i.i.d. random
quantities (‘ladder heights’).

˝ Method 3: use queueing model. Idea: rely on Kella-Whitt
martingale and optional sampling machinery.

˝ Method 4: use queueing model. Idea: set up system of differential
equations for the transform under study, and solve these.
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Method 1: condition on first event

Roadmap:
˝ Evaluate πpα, βq by conditioning on first event, which is either a

claim arrival or killing.
˝ Obtain an expression in terms of the transform of interest πpα, βq.
˝ Solve πpα, βq from the resulting equation (also requiring

identification of an unknown constant).
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Method 1: condition on first event, ctd.

Recall: Tβ is exponentially distributed with mean β´1. Hence,

ppu,Tβq “
λ

λ` β

´

p1pu,Tβq ` p2pu,Tβq

¯

,

where, distinguishing between scenario that there is ruin due to first
claim and scenario that multiple claims are needed,

p1pu,Tβq :“

ż 8

0
pλ` βqe´pλ`βqs

ż 8

u`rs

PpB P dvq ds,

p2pu,Tβq :“

ż 8

0
pλ` βqe´pλ`βqs

ż u`rs

0
ppu ` rs ´ v ,TβqPpB P dvq ds;

in latter expression, memoryless property of exponential distribution has
been used.
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Method 1: condition on first event, ctd.

We can thus write πpα, βq “ π1pα, βq ` π2pα, βq, with

π1pα, βq :“

ż 8

0
e´αu

ż 8

0
λ e´pλ`βqs

ż 8

u`rs

PpB P dvq ds du,

π2pα, βq :“

ż 8

0
e´αu

ż 8

0
λ e´pλ`βqs

ż u`rs

0
ppu ` rs ´ v ,TβqPpB P dvq ds du.

Next step: evaluate these by swapping order of integrals (and a change of
variable).
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Method 1: condition on first event, ctd.

Interchanging the order of the integrals,

π1pα, βq “ λ

ż 8

0

˜

ż v

0
e´αu

˜

ż pv´uq{r

0
e´pλ`βqs ds

¸

du

¸

PpB P dvq.

Then inner integrals can be evaluated:

λ

λ` β

ż 8

0

ˆ

1 ´ e´αv

α
´

e´pλ`βqv{r ´ e´αv

α ´ pλ` βq{r

˙

PpB P dvq.

This quantity can be interpreted in terms of the LST of B evaluated in
specific values: with spβq :“ pλ` βq{r ,

π1pα, βq “
λ

λ` β

ˆ

1 ´ bpαq

α
´

bpspβqq ´ bpαq

α ´ spβq

˙

.
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Method 1: condition on first event, ctd.
Performing change of variable w :“ u ` rs, π2pα, βq equals

1
r

ż 8

0
e´αu

ż 8

u

λ e´spβqpw´uq

ż w

0
ppw ´ v ,TβqPpB P dvq dw du.

Swap order of integrals:

λ

r

ż 8

0

ˆ
ż 8

v

e´spβqwppw ´ v ,Tβq

ˆ
ż w

0
e´αue´spβqpw´uq du

˙

dw

˙

PpB P dvq

“
λ

r

1
α ´ spβq

ż 8

0

ˆ
ż 8

v

`

e´spβqw ´ e´αw
˘

ppw ´ v ,Tβq dw

˙

PpB P dvq.

But
ż 8

v

e´αwppw ´ v ,Tβq dw “ e´αv

ż 8

0
e´αwppw ,Tβq dw “ e´αvπpα, βq,

(and likewise for spβq instead of α), so that

π2pα, βq “
λ

r

1
spβq ´ α

`

bpαqπpα, βq ´ bpspβqqπpspβq, βq
˘

.
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Method 1: condition on first event, ctd.

˝ Add up expressions for π1pα, βq and π2pα, βq.
˝ Observe that π2pα, βq contains a term involving πpα, βq.
˝ Solve for πpα, βq.

Result:

πpα, βq “ r
λ

λ` β

spβq ´ α

rpspβq ´ αq ´ λbpαq

1 ´ bpαq

α
´

r
λ

λ` β

bpαq ´ bpspβqq

rpspβq ´ αq ´ λbpαq
´
λ bpspβqqπpspβq, βq

rpspβq ´ αq ´ λbpαq
.

Observe that right-hand side contains unknown quantity πpspβq, βq.
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Method 1: condition on first event, ctd.

Constant πpspβq, βq can be identified by using that a root of the
denominator is also a root of the numerator.

Elementary: equation rpspβq ´ αq ´ λbpαq “ 0 has for any β ą 0 a
unique positive root, say ψpβq.

Leads to:

πpspβq, βq “
r

λ` β

ˆ

spβq ´ ψpβq

bpspβqq

1 ´ bpψpβqq

ψpβq
´

bpψpβqq ´ bpspβqq

bpspβqq

˙

“
r

λ` β

ˆ

spβqp1 ´ bpψpβqqq ´ ψpβqp1 ´ bpspβqqq

bpspβqqψpβq

˙

.
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Method 1: condition on first event, ctd.

Now define Laplace exponent

φpαq :“ logE e´αY p1q “ rα ´ λp1 ´ bpαqq.

Function ψp¨q, as defined above, is inverse of Laplace exponent φp¨q

(Check!) — in case φ1p0q ă 0 actually right inverse.

Plugging in expression for πpspβq, βq into πpα, βq, after some calculus,

πpα, βq “
λ

φpαq ´ β

ˆ

1 ´ bpψpβqq

ψpβq
´

1 ´ bpαq

α

˙

“
1

φpαq ´ β

ˆ

φpαq ´ rα

α
´
β ´ rψpβq

ψpβq

˙

“
1

φpαq ´ β

ˆ

φpαq

α
´

β

ψpβq

˙

.
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Method 1: condition on first event, ctd.

α, β

φpαq

ψpβq

α, β

φpαq

ψpβq

Figure: Functions φpαq and ψpβq with φ1
p0q ą 0 (left panel) and with

φ1
p0q ă 0 (right panel). In former case ψp0q “ 0, whereas in latter case

ψp0q ą 0.
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Method 1: condition on first event, ctd.

Now use result to derive expression for transform of Ȳ pTβq, by
translating ϱpα, βq in terms of πpα, βq.

Theorem (Time-dependent Pollaczek-Khinchine)

For any α ě 0 and β ą 0,

ϱpα, βq “
α ´ ψpβq

φpαq ´ β

β

ψpβq
.

Exercise 1.1: procedure that uses this theorem to recursively evaluate all
moments of running maximum Ȳ pTβq.
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Method 1: condition on first event, ctd.

Transform of Ȳ p8q found by letting β Ó 0.
Net-profit condition needed, to make sure that Ȳ p8q is finite.

Corollary (Pollaczek-Khinchine)

For any α ě 0, under the net-profit condition,

ϱpαq :“ E e´αȲ p8q “ ϱpα, 0q “
αφ1p0q

φpαq
.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Method 1: condition on first event, ctd.

‘Pollaczek-Khinchine’ can be alternatively written as

ϱpαq “
αpr ´ λEBq

rα ´ λp1 ´ bpαqq
“

ˆ

1 ´
λEB
r

˙ Nˆ

1 ´
λ

r

1 ´ bpαq

α

˙

.

Observe: p1 ´ bpαqq{pαEBq is transform of random variable B̄ with
density fB̄ptq :“ PpB ě tq{EB:

E e´αB̄ “

ż 8

0
e´αu PpB ě uq

EB
du “

1 ´ bpαq

αEB
.

This implies |p1 ´ bpαqq{pαEBq| ď 1 for α ě 0, so that we can write

ϱpαq “

ˆ

1 ´
λEB
r

˙ 8
ÿ

n“0

ˆ

λEB
r

˙n ˆ

1 ´ bpαq

αEB

˙n

.
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Method 1: condition on first event, ctd.
Define c :“ 1 ´ λEB{r P p0, 1q, and let G be geometrically distributed
with success probability c :

PpG “ nq “ p1 ´ cqnc .

In addition, let B̄‹i be a random variable defined as the sum of i i.i.d.
copies of B̄. Then we find the following representation.

Proposition (Geometric sum representation)

The following distributional equality applies: under the net-profit
condition, an empty sum being defined as zero,

Ȳ p8q
d
“

G
ÿ

i“1

B̄i
d
“ B̄‹G .
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Method 1: condition on first event, ctd.

Lemma
For any β ą 0, ´Y pTβq is exponentially distributed with mean 1{ψpβq.

Proof. Process K ptq :“ e´φpαqt e´αY ptq is a mean-1 martingale. Define
σpvq as first time Y ptq crosses level ´v , for some given v ą 0.
Observe that Y pσpvqq “ ´v (Why?), so that by ‘optional sampling’

1 “ EK p0q “ EK pσpvqq “ E
`

e´φpαqσpvq1tσpvq ă 8u
˘

¨ eαv .

Plug in α “ ψpβq:

E
`

e´βσpvq1tσpvq ă 8u
˘

“ e´ψpβqv .

Stated follows from t´Y pTβq ě vu “ tσpvq ď Tβu and Remark 1.3:

Pp´Y pTβq ě vq “ Ppσpvq ď Tβq “ E
`

e´βσpvq1tσpvq ă 8u
˘

“ e´ψpβqv .
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Method 1: condition on first event, ctd.
˝ Note that

E e´αY pTβq “

ż 8

0
βe´βteφpαqtdt “

β

β ´ φpαq
.

˝ Time-reversal: Ȳ pTβq ´ Y pTβq
d
“ ´Y pTβq. Due to Lemma,

Ȳ pTβq ´ Y pTβq is exponentially distributed with mean 1{ψpβq. So

E e´αpȲ pTβq´Y pTβqq “
ψpβq

ψpβq ` α
.

˝ By ‘Time-dependent Pollaczek-Khinchine’ and above results,

E e´αȲ pTβq E e´αpY pTβq´Ȳ pTβqq “
α ´ ψpβq

φpαq ´ β

β

ψpβq
¨

ψpβq

ψpβq ´ α

“
β

β ´ φpαq
“ E e´αY pTβq.
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Method 1: condition on first event, ctd.

As (evidently)

Y pTβq “ Ȳ pTβq ` pY pTβq ´ Ȳ pTβqq,

above observations lead to the following result.

Proposition (Wiener-Hopf decomposition)

The random variables Ȳ pTβq and Ȳ pTβq ´ Y pTβq are independent.
The former has a Laplace-Stieltjes transform that is given by the
time-dependent Pollaczek-Khinchine theorem, whereas the latter has the
same distribution as ´Y pTβq, i.e., is exponentially distributed with mean
1{ψpβq.
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Method 2: ladder heights

Roadmap:
˝ Ȳ pTβq is distributed as sum of geometric number of i.i.d. copies of a

ladder height H.
˝ Determine transform of H (also using some queueing-theoretic

arguments).
˝ Determine ϱpα, βq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Method 2: ladder heights, ctd.

Define τ0 “ 0, and for i “ 1, 2, . . .,

τi :“ inf

#

t ě 0 : Y

˜

t `

i´1
ÿ

j“1

τj

¸

´ Y

˜

i´1
ÿ

j“1

τj

¸

ą 0

+

,

Hi :“ Y

˜

i
ÿ

j“1

τj

¸

´ Y

˜

i´1
ÿ

j“1

τj

¸

.

˝ Hi : difference between the process’ i-th and pi ´ 1q-st record value;
˝ τi : time elapsed between epochs at which these two record values

are attained.
pHi , τi qiPN is sequence of i.i.d. random vectors; let pH, τq be
corresponding generic random vector.
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Method 2: ladder heights, ctd.

Busy period: uninterrupted interval in which associated queueing process
is positive; are i.i.d., say distributed as generic random variable σ.

Observation: with B sampled independently of process Y ptq, busy period
σ is distributed as first time Y ptq crosses (stochastic) level ´B.
Note: σ can be defective if net-profit condition is not fulfilled.
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Method 2: ladder heights, ctd.

With σpxq as defined before,

E
`

e´βσ 1tσ ă 8u
˘

“

ż 8

0
E

`

e´βσpxq 1tσpxq ă 8u
˘

PpB P dxq

“

ż 8

0
e´ψpβqx PpB P dxq “ bpψpβqq.

Using definition of φp¨q, we find β “ φpψpβqq “ rψpβq ´ λp1 ´ bpψpβqqq.

Lemma
For any β ą 0,

E
`

e´βσ 1tσ ă 8u
˘

“
β ` λ

λ
´

r

λ
ψpβq.
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Method 2: ladder heights, ctd.

Define

ξpα, βq :“ E
`

e´αY pTβq 1tY pTβq “ Y pTβqu
˘

“ E
`

e´αY pTβq 1tY pTβq “ Y pTβqu
˘

.

Proposition
For any α ě 0 and β ą 0,

ξpα, βq “
β

rψpβq ´ rα
.
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Method 2: ladder heights, ctd.

Proof. Lptq :“ ´Y ptq{r is the associated queue’s idle time in r0, ts
(Check!). Hence, consider

ξpα, βq “ E
`

erαLpTβq 1tQpTβq “ 0u
˘

.

Conditioning on the first event (killing time or start of a busy period), by
exploiting the underlying regenerative structure,

ξpα, βq “
β

λ´ rα ` β
`

λ

λ´ rα ` β
Ppσ ď Tβq ξpα, βq.

Recalling that Ppσ ď Tβq can be rewritten as E pe´βσ 1tσ ă 8uq

(Remark 1.3), and using Lemma,

ξpα, βq “
β

λp1 ´ E e´βσq ´ rα ` β
“

β

rψpβq ´ rα
.
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Method 2: ladder heights, ctd.

Next objective: compute

ηpα, βq :“ E
`

e´αH´βτ 1tτ ă 8u
˘

.

Proposition
For any α ě 0 and β ą 0,

ηpα, βq “ 1 ´
β ´ φpαq

rψpβq ´ rα
.
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Method 2: ladder heights, ctd.
Proof. Use decomposition

β

β ´ φpαq
“ E e´αY pTβq “ η1pα, βq ` η2pα, βq,

where

η1pα, βq :“ E
`

e´αY pTβq 1tτ ą Tβ , τ ă 8u
˘

,

η2pα, βq :“ E
`

e´αY pTβq 1tτ ď Tβ , τ ă 8u
˘

.

Recalling definition of ξpα, βq,

η1pα, βq “ E
`

e´αY pTβq 1tȲ pTβq “ 0u
˘

“ E
`

e´αY pTβq 1tY pTβq ´ Y pTβq “ 0u
˘

“ ξpα, βq,

which is known from previous Proposition.
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Method 2: ladder heights, ctd.

η2pα, βq “

ż 8

t“0
βe´βt

ż t

s“0

ż 8

y“0
e´αy E

`

e´αpY ptq´Y pτqq |H “ y , τ “ s
˘

PpH P dy , τ P dsq dt

“

ż 8

t“0
βe´βt

ż t

s“0

ż 8

y“0
e´αyeφpαqpt´sq PpH P dy , τ P dsq dt.

Swap order of integrals:
ż 8

s“0

ż 8

y“0

ˆ
ż 8

t“s

βe´βteφpαqtdt

˙

e´αy e´φpαqs PpH P dy , τ P dsq

“
β

β ´ φpαq

ż 8

s“0

ż 8

y“0
e´αye´βs PpH P dy , τ P dsq

“
β

β ´ φpαq
ηpα, βq.

Combining the above, stated follows after some algebra.
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Method 2: ladder heights, ctd.

Using geometric-sum representation, we can now compute transform of
running maximum Ȳ pTβq. We thus recover time-dependent
Pollaczek-Khinchine theorem:

ϱpα, βq “

8
ÿ

k“0

`

ηpα, βq
˘k`

1 ´ ηp0, βq
˘

“

8
ÿ

k“0

ˆ

1 ´
β ´ φpαq

rψpβq ´ rα

˙k
β

rψpβq

“
α ´ ψpβq

φpαq ´ β

β

ψpβq
.
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Method 3: Kella-Whitt martingale

Roadmap:
˝ Use queueing representation.
˝ Consider Kella-Whitt martingale involving the queueing process.
˝ By ‘optional sampling’ expression for ϱpα, βq is found.
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Method 3: Kella-Whitt martingale, ctd.

Define

Mptq :“ φpαq

ż t

0
e´αQpsq ds ` 1 ´ e´αQptq ` αY ptq.

Lemma
The process Mptq is a martingale with respect to F ptq, i.e., the natural
filtration pertaining to tY psq : s P r0, tsu.

Proof in e.g. Kyprianou book; informal support in Section 1.5.
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Method 3: Kella-Whitt martingale, ctd.

Using ‘optional sampling’ with the stopping time Tβ and recalling that
Qp0q “ 0, we have that 0 “ EMp0q “ EMpTβq.

Hence,

0 “ φpαqE
ż Tβ

0
e´αQpsq ds ` 1 ´ E e´αQpTβq ` αEY pTβq.
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Method 3: Kella-Whitt martingale, ctd.

Swapping the order of integration,

E
ż Tβ

0
e´αQpsq ds “

ż 8

0
βe´βt

ż t

0
E e´αQpsq ds dt

“

ż 8

0

ˆ
ż 8

s

βe´βtdt

˙

E e´αQpsq ds

“

ż 8

0
e´βsE e´αQpsq ds

“
1
β
E e´αQpTβq.

Solving E e´αQpTβq,

E e´αQpTβq “
β

φpαq ´ β
p´αEY pTβq ´ 1q .
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Method 3: Kella-Whitt martingale, ctd.

Left: find EY pTβq. Note that (fixing β ą 0) any root α ą 0 of
denominator should be root of numerator as well.

Hence, using that α “ ψpβq is root of denominator,

´ψpβqEY pTβq “ 1,

so that EY pTβq “ ´1{ψpβq.

From the above we conclude that, in agreement with time-dependent
Pollaczek-Khinchine theorem,

E e´αQpTβq “
α ´ ψpβq

φpαq ´ β

β

ψpβq
.
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Method 4: Kolmogorov forward equations

Roadmap:
˝ Use queueing representation. Express E e´αQpt`∆tq in terms of
E e´αQptq.

˝ Set up a differential equation, and transform it with respect to time.
˝ Solve the resulting identity, to obtain ϱpα, βq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Method 4: Kolmogorov forward equations, ctd.

Define Ftpyq as probability that Qptq does not exceed y , where
Qp0q “ 0, and let ftpyq denote corresponding density.

Elementary ∆t-argument gives, up to op∆tq-terms,

Ft`∆tpyq “ Ftpy ` r ∆tqp1 ´ λ∆tq

` λ∆t

ˆ
ż y

0`

ftpzqPpB ď y ´ zq dz ` Ftp0qPpB ď yq

˙

.

Subtracting Ftpy ` r ∆tq, dividing by ∆t and letting ∆t Ó 0:

B

Bt
Ftpyq “ rftpyq ´ λFtpyq

` λ

ˆ
ż y

0`

ftpzqPpB ď y ´ zq dz ` Ftp0qPpB ď yq

˙

.
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Method 4: Kolmogorov forward equations, ctd.
Same can be done for LST of Qptq. With

κtpαq :“ E e´αQptq, κ̄tpαq :“ E e´αQptq1tQptq ą 0u “ κtpαq ´ qt ,

where qt :“ PpQptq “ 0q “ Ftp0q and 1tAu indicator of event A,

κ̄t`∆tpαq ` qt`∆t “ κt`∆tpαq

“ κ̄tpαq
`

1 ´ λ∆t ` λ∆t bpαq ` rα∆t
˘

` qt
`

1 ´ λ∆t ` λ∆t bpαq
˘

“ κ̄tpαq
`

1 ` φpαq∆t
˘

`
`

1 ´ λ∆t ` λ∆t bpαq
˘

qt .

Lemma
For any α, t ą 0,

B

Bt
κ̄tpαq `

B

Bt
qt “ φpαq κ̄tpαq ´ qt λ

`

1 ´ bpαq
˘

.
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Method 4: Kolmogorov forward equations, ctd.

Consider differential equation of Lemma, but now at exponentially
distributed time Tβ .

Standard identity
ż 8

0
βe´βt

ˆ

B

Bt
f ptq

˙

dt “ ´βf p0q ` β

ż 8

0
βe´βt f ptq dt.

Hence,

´βκ̄0pαq ` β

ż 8

0
βe´βt κ̄tpαq dt ´ βq0 ` β

ż 8

0
βe´βtqt dt

“ φpαq

ż 8

0
βe´βt κ̄tpαq dt ´ λ

`

1 ´ bpαq
˘

ż 8

0
βe´βtqt dt.
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Method 4: Kolmogorov forward equations, ctd.
Due to Qp0q “ 0, we have κ̄0pαq “ 0 and q0 “ 1. Rearranging, and
using definition of φpαq,

`

β ´ φpαq
˘

κ̄Tβ
pαq `

`

β ´ φpαq ` rα
˘

qTβ
“ β.

Observe that qTβ
can be identified by inserting α “ ψpβq:

qTβ
“

β

β ` λp1 ´ bpψpβqqq
“

β

rψpβq
.

Time-dependent Pollaczek-Khinchine theorem is recovered:

E e´αQpTβq “ κ̄Tβ
pαq ` qTβ

“
β

β ´ φpαq
´
β ´ φpαq ` rα

β ´ φpαq
qTβ

` qTβ

“
β ´ rα qTβ

β ´ φpαq
“
α ´ ψpβq

φpαq ´ β

β

ψpβq
.
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Method 4: Kolmogorov forward equations, ctd.

Interesting connection with concept of rate conservation.
We get back to this in Chapter 5.

Yields elegant way to show that stationary workload Qp8q is distributed
as sum of geometric number (with success probability c) of i.i.d. copies
of B̄.
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Chapter 1: concluding remarks

In Exercise 1.2 you will substantially generalize result on πpα, βq.

Instead of looking at ruin probabilities, we consider object, with
γ :“ pγ1, γ2, γ3q,

ppu, t,γq :“ E
`

e´γ1τpuq´γ2Xupτpuq´q´γ3Xupτpuqq1tτpuq ď tu
˘

.

This includes time of ruin τpuq, value of reserve process immediately
before ruin Xupτpuq´q, and value of reserve process at ruin Xupτpuqq.
Here Xupτpuq´q ą 0 can be seen as undershoot, and ´Xupτpuqq ě 0 as
overshoot.
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Chapter 1: concluding remarks

In Exercise 1.5 you will establish second substantial generalization.

Brownian component is included into net cumulative claim process Y ptq.
Remarkably, results for CL model (i.e., without Brownian component)
can still be used when describing transform of Ȳ p8q.
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CHAPTER II: ASYMPTOTICS
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Asymptotics: main ideas

˝ Previous chapter: we derived transform of ruin probability.
˝ Interestingly, when settling for stationary asymptotics (i.e.,
PpȲ p8q ą uq for u large) explicit results can be found.

˝ Need to distinguish between light-tailed and heavy-tailed claim-size
distributions.

˝ Transient asymptotics (i.e., PpY ptq ą uq for u large) harder to
analyse.
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Asymptotics: main ideas, ctd.

We throughout assume EY p1q ă 0, so that Y ptq does not drift to 8 as
t Ñ 8. Hence ppuq Ñ 0 as u Ñ 8.

Equivalently: impose net-profit condition λEB ă r .

Distinguish between claim-size distribution having a light or heavy tail:
˝ Light-tailed case: ppuq decays exponentially, with (for large u) net

cumulative claim process moving ‘roughly gradually’ towards level u.
˝ Heavy-tailed (‘subexponential’) case: exceeding level u is (for large
u) with overwhelming probability due to a single large claim.
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Asymptotics: main ideas, ctd.

u

t

Y ptq

u

t

Y ptq

Figure: Typical trajectory of net cumulative claim process Y ptq exceeding high
level u in light-tailed case (left panel), and in heavy-tailed case (right panel).
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Light-tailed case

Assume: there is strictly positive solution θ‹ to the equation φp´θ‹q “ 0;
recall

φpαq :“ logEe´αY p1q “ rα ´ λp1 ´ bpαqq.

This requires Ee´αY p1q ă 8 for some α ă 0, and therefore all moments
of Y p1q are finite (and hence all moments of Y ptq for any t ě 0).

Explains why we refer to this setting as light-tailed case. It implicitly
means that claim size B is light-tailed as well; write B P L .

Primary objective: identify exact asymptotics of ppuq for B P L : we find
explicit function p̂puq such that ppuq{p̂puq Ñ 1 as u Ñ 8.
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Light-tailed case, ctd.

Change-of-measure: work with net cumulative claim process with Laplace
exponent φQpαq :“ φpα ´ θ‹q rather than φpαq.
Q: probability measure that goes with this alternative Laplace exponent.

Next goal: check that φQpαq is indeed Laplace exponent of compound
Poisson process with drift.
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Light-tailed case, ctd.

As θ‹ solves the equation ´rθ‹ ´ λp1 ´ bp´θ‹qq “ 0, we can write

φpα ´ θ‹q “ rpα ´ θ‹q ´ λp1 ´ bpα ´ θ‹qq

“ rα ´ λbp´θ‹q

ˆ

1 ´
bpα ´ θ‹q

bp´θ‹q

˙

.

Note: eθ
‹x PpB P dxq{bp´θ‹q is a density of random variable with LST

bpα ´ θ‹q{bp´θ‹q.
We say: this density is an exponentially twisted version of original density.

Conclude: φQpαq “ φpα ´ θ‹q is Laplace exponent of compound Poisson
process where

˝ claim arrival rate is λQ :“ λbp´θ‹q,
˝ claims have LST bQpαq :“ bpα ´ θ‹q{bp´θ‹q,
˝ negative drift remains r .
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Light-tailed case, ctd.

α

φpαq

´θ‹

α

φQpαq

θ‹

Figure: Functions φpαq (left panel) and φQpαq (right panel). Observe:
φ1

p0q ą 0 but φ1
Qp0q ă 0.
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Light-tailed case, ctd.

Recall: Y ptq drifts to ´8 under P, due to EY p1q ă 0. And under Q?

First note:

EQB “ ´b1
Qp0q “ ´

b1p´θ‹q

bp´θ‹q
,

with EQp¨q denoting expectation under Q.

Hence,

EQY p1q “ λQ

ˆ

´
b1p´θ‹q

bp´θ‹q

˙

´r “ ´λ b1p´θ‹q´r “ ´φ1p´θ‹q “ ´φ1
Qp0q,

which is positive due to convexity of φp¨q and definition of θ‹.
Conclude: under Q process Y p¨q drifts to 8.
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Light-tailed case, ctd.

Main idea behind finding exact asymptotics of ppuq using Q:
˝ Denote by τpuq first time that Y p¨q reaches u. Hence,
ppuq “ Ppτpuq ă 8q.

˝ Perform experiment of verifying whether or not τpuq ă 8 applies
under Q rather than under P.

˝ Under Q event tτpuq ă 8u has probability 1, due to EQY p1q ą 0,
but apply ‘compensation’ to correct for difference between P and Q.

˝ Use results from Section 1.4 to derive exact asymptotics.
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Light-tailed case, ctd.

N: index of claim at which, in our experiment, u is reached.

Hence, at that point interarrival times (say) E ” pE1, . . . ,ENq and claim
sizes B ” pB1, . . . ,BNq have been sampled (under Q).

With L ” LpE ,Bq denoting likelihood ratio of pE ,Bq (under P, relative
to Q), we have identity

ppuq “ Ppτpuq ă 8q “ E1tτpuq ă 8u “ EQ
`

1tτpuq ă 8u LpE ,Bq
˘

.

Here LpE ,Bq is Radon-Nikodym derivative, often denoted by

L “
dP
dQ

”
dP
dQ

pE ,Bq.
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Light-tailed case, ctd.

L: ratio of the densities of all sampled quantities, where in numerator
these correspond to P and in denominator to Q.

With fPp¨q and fQp¨q the densities of B under P and Q,

LpE ,Bq “
λ e´λE1 fPpB1q ¨ ¨ ¨λ e´λEN fPpBNq

λQ e´λQE1 fQpB1q ¨ ¨ ¨λQ e´λQEN fQpBNq
.

Applying
λ

λQ
“

1
bp´θ‹q

,
fPpxq

fQpxq
“ e´θ‹xbp´θ‹q,

expression for LpE ,Bq can be rewritten.
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Light-tailed case, ctd.

LpE ,Bq “ exp

˜

pλQ ´ λq

N
ÿ

n“1

En ´ θ‹

N
ÿ

n“1

Bn

¸

“ exp

˜

´λp1 ´ bp´θ‹qq

N
ÿ

n“1

En ´ θ‹

N
ÿ

n“1

Bn

¸

“ exp

˜

rθ‹

N
ÿ

n“1

En ´ θ‹

N
ÿ

n“1

Bn

¸

“ e´θ‹Y pτpuqq.

Recall ppuq “ EQp1tτpuq ă 8u LpE ,Bqq and Qpτpuq ă 8q “ 1.

Proposition
Assume B P L . For any u ą 0,

ppuq “ EQe
´θ‹Y pτpuqq.
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Light-tailed case, ctd.

Previous Proposition holds for any u ą 0; no ‘asymptotics’.

Realizing that (by definition) Y pτpuqq ě u, following upper bound
follows.

Proposition (Lundberg inequality)

Assume B P L . For any u ą 0,

ppuq ď e´θ‹u.
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Light-tailed case, ctd.

Observe that we can write Y pτpuqq “ u ` Rpuq, with Rpuq ě 0
overshoot over level u. Idea: prove that EQe

´θ‹Rpuq Ñ γ, as u Ñ 8,
which then implies that

lim
uÑ8

ppuq eθ
‹u Ñ γ.

pHnqn: ladder height process corresponding to net cumulative claim
process Y ptq (see Section 1.4).

Individual ladder heights are i.i.d., so that pHnqn is renewal process
(which is, under Q, non-defective); let H denote generic ladder height.

Crucial observation: Rpuq is overshoot of pHnqn over u.
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Light-tailed case, ctd.

H1

H2

H3

H4

H5
u

t

Y ptq

Rpuq

Figure: Net cumulative claim process Y ptq, ladder height process pHnqn, and
overshoot Rpuq over level u (dashed line); corresponding running maximum
process Ȳ ptq is depicted by dotted lines.
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Light-tailed case, ctd.

Renewal theory: as u Ñ 8, overshoot converges (in distribution) to
limiting variable H̄ with distribution function

QpH̄ ď xq “

ż x

0

QpH ě yq

EQ H
dy .

Conclude
γ “ EQ e´θ‹H̄ .

Use theory developed in Section 1.4 to evaluate γ.
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Light-tailed case, ctd.

First determine EQ e´αH . Proposition 1.4:

EQ e´αH “ 1 ´
0 ´ φQpαq

rθ‹ ´ rα
“
λ

r

1 ´ bpα ´ θ‹q

α ´ θ‹
;

use that, in self-evident notation, ψQp0q “ θ‹. Then,

EQH “ ´ lim
αÓ0

d

dα
EQ e´αH “

λ

r
lim
αÓ0

1 ´ bpα ´ θ‹q ` pα ´ θ‹qb1pα ´ θ‹q

pα ´ θ‹q2

“
λ

r

1 ´ bp´θ‹q ´ θ‹ b1p´θ‹q

pθ‹q2 “
1
rθ‹

EQY p1q

(last equality: use that θ‹ solves φp´θ‹q “ 0 and definition of EQY p1q).
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Light-tailed case, ctd.

By definition of H̄,

EQ e´αH̄ “
1
α

1
EQH

`

1 ´ EQ e´αH
˘

,

so that

EQ e´θ‹H̄ “ lim
αÓθ‹

1
α

1
EQH

`

1 ´ EQ e´αH
˘

“
1
θ‹

1
EQH

ˆ

1 `
λ

r
b1p0q

˙

“ ´
1
rθ‹

1
EQH

EY p1q.

Conclude: γ “ ´EY p1q{EQY p1q P p0,8q.
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Light-tailed case, ctd.

Theorem (Cramér-Lundberg approximation)

Assume B P L . As u Ñ 8,

ppuq eθ
‹u Ñ γ :“ ´

EY p1q

EQY p1q
.

In practice we use, for u large,

ppuq « p̂puq :“ γe´θ‹u.

Exercise 2.3: you will extend this result to case where Brownian motion
has been added to net cumulative claim process Y ptq.
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Light-tailed case, ctd.
In case one settles for just exponential decay rate θ‹, elementary
derivation can be given, using large deviation theory.

˝ Let Y1,Y2, . . . be i.i.d. random variables distributed as Y p1q.
Cramér’s theorem: for a ą EY p1q,

lim
nÑ8

1
n
logP

˜

n
ÿ

i“1

Yi ě na

¸

“ ´I paq,

where I paq :“ supθą0 pθa ´ φp´θqq is Legendre transform of the
cumulant generating function φp´θq. I paq is non-negative and
convex, and attains its minimal value 0 in a “ EY p1q “ ´φ1p0q.

˝ Chernoff bound: uniformly in n,

P

˜

n
ÿ

i“1

Yi ě na

¸

ď e´nIpaq.
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Light-tailed case, ctd.

Lower bound: for any T ą 0, ppuq “ PpȲ p8q ě uq ě PpY pTuq ě uq.
Hence, for all T , u ą 0,

1
u
log ppuq ě

T

Tu
logP

ˆ

Y pTuq

Tu
ě

1
T

˙

.

Applying Cramér’s theorem:

lim inf
uÑ8

1
u
log ppuq ě ´T I p1{T q.

As this lower bound applies to any T ą 0, we can select sharpest lower
bound. Denoting I ‹ :“ T ‹I p1{T ‹q with T ‹ :“ arg infTą0 T I p1{T q,

lim inf
uÑ8

1
u
log ppuq ě ´I ‹.

Later we’ll show I ‹ “ θ‹.
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Light-tailed case, ctd.

Upper bound: first observe that (Why?)

ppuq ď P

˜

Dn P N :
n

ÿ

i“1

Yi ě u ´ r

¸

ď

8
ÿ

n“1

P

˜

n
ÿ

i“1

Yi ě u ´ r

¸

.

For given ε ą 0, split into two sums:

T‹
p1`εqu
ÿ

n“1

P

˜

n
ÿ

i“1

Yi ě u ´ r

¸

`

8
ÿ

n“T‹p1`εqu`1

P

˜

n
ÿ

i“1

Yi ě u ´ r

¸

;

For u ą r , second sum is dominated by (Chernoff bound!)

8
ÿ

n“T‹p1`εqu`1

P

˜

n
ÿ

i“1

Yi ě 0

¸

ď

8
ÿ

n“T‹p1`εqu`1

e´nIp0q “
e´pT‹

p1`εqu`1qIp0q

1 ´ e´Ip0q
.
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Light-tailed case, ctd.

First sum is majorized by (again Chernoff bound!)

T ‹p1 ` εqu max
n“1,...,T‹p1`εqu

P

˜

n
ÿ

i“1

Yi ě u ´ r

¸

ď T ‹p1 ` εqu max
n“1,...,T‹p1`εqu

exp

ˆ

´nI
´u ´ r

n

¯

˙

.

By definition of T ‹, for any δ ą 0 and u large enough

exp

ˆ

´nI
´u ´ r

n

¯

˙

“ exp

ˆ

´pu ´ rq
n

u ´ r
I
´u ´ r

n

¯

˙

ď e´pu´rqpI‹
´δq

for all n P t1, . . . ,T ‹p1 ` εquu.

Pick ε large enough that T ‹p1 ` εqI p0q ą I ‹ ´ δ, so that decay rate of
first sum dominates.
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Light-tailed case, ctd.

Conclude:

lim sup
uÑ8

1
u
log ppuq ď lim sup

uÑ8

1
u
log

´

T ‹p1 ` εqu e´pu´rqpI‹
´δq

¯

“ ´I ‹ ` δ.

Let δ Ó 0.

Together with the lower bound: logarithmic asymptotics of ppuq are
given by

lim
uÑ8

1
u
log ppuq “ ´I ‹.

Left to prove: I ‹ “ θ‹.
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Light-tailed case, ctd.

Let θpaq be optimizing argument in definition of I paq, i.e., θpaq solves
a “ ´φ1p´θq.

Define ∆ :“ 1{T so that I ‹ “ inf∆ą0 I p∆q{∆. To find optimizing ∆,
compute derivative of I p∆q{∆ and equate it to 0. First order condition:
∆I 1p∆q ´ I p∆q “ 0, and hence

∆
`

θ1p∆q∆ ` θp∆q ` φ1p´θp∆qqθ1p∆q
˘

´ I p∆q “ 0.

But, as we know that ∆ ` φ1p´θp∆qq “ 0, this condition reduces to
∆θp∆q “ I p∆q, i.e., φp´θp∆‹qq “ 0 for optimizing ∆‹.

Hence, θp∆‹q “ θ‹. Conclude

I ‹ “
I p∆‹q

∆‹
“

∆‹ θ‹

∆‹
“ θ‹.
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Light-tailed case, ctd.

Minimization inf∆ą0 I p∆q{∆ has following appealing interpretation.

∆: slope at which Y ptq moves from level 0 to level u, which ‘costs’ I p∆q

per unit of time. Time needed to reach u is proportional to 1{∆.

When optimizing cost I p∆q{∆ over ∆, we obtain ‘cheapest’ slope.
Trade-off: low ∆ leads to low cost per unit of time but then unusual
behavior has to persist for long time, and vice versa for high ∆.

Timescale T ‹ :“ 1{∆‹ has similar interpretation: T ‹u is typical time to
reach u. (In proof: first sum, containing timescales around T ‹u,
dominates second sum.)
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Subexponential case

Result from Chapter 1:

ppuq “ P

˜

G
ÿ

i“1

B̄i ě u

¸

“ P
`

B̄‹G ě u
˘

,

where B̄ is ‘residual’ of B, and G is geometric with success probability

c :“ 1 ´ λEB{r .

The density of B̄ is given by

fB̄ptq :“
PpB ě tq

EB
.
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Subexponential case, ctd.

In previous section: claim-size distribution was light-tailed (so that all
moments exist).
Now: what happens if this condition is violated?

We assume that B̄ is such that, as u Ñ 8,

PpB̄‹2 ě uq

PpB̄ ě uq
Ñ 2.

(If the sum of two i.i.d. copies of B̄ is large, this is due to one of them
being large, rather than both of them significantly contributing.)

Write: B̄ P S with S set of subexponential distributions.

In general neither B̄ P S implies B P S , nor B P S implies B̄ P S . But,
for broad set of relevant distributions, B P S and B̄ P S are equivalent.
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Subexponential case, ctd.

Theorem
Assume B̄ P S . As u Ñ 8,

ppuq

PpB̄ ě uq
Ñ

1 ´ c

c
.

First: some auxiliary results, covering useful properties of subexponential
distributions.
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Subexponential case, ctd.

Lemma
(i) If Y P S , then, as u Ñ 8

PpY ‹i ě uq

PpY ě uq
Ñ i .

(ii) If Y P S , then for all ε ą 0 there exists a constant Kε such that, for
all i and u,

PpY ‹i ě uq ď Kεp1 ` εqi PpY ě uq.

(iii) Let Y1,Y2, . . . be i.i.d., distributed as generic random variable Y .
Let I P N0 be independent of Y1,Y2, . . . with E z I ă 8 for some z ą 1.
Then, as u Ñ 8,

PpY ‹I ě uq

PpY ě uq
Ñ EI .
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Subexponential case, ctd.
Proof. Part (i) follows inductively from definition.
Part (ii): see proof in book Asmussen & Albrecher.
Part (iii) is ‘stochastic version’ of part (i). Proof relies on bounded
convergence; see proof Lemma 2.2.

Proof of Theorem. Combine geometric sum representation with part (iii)
of Lemma. In addition, observe that

EG “

8
ÿ

i“0

i p1 ´ cqic “
1 ´ c

c

and E zG ă 8 if z P p1, 1{p1 ´ cqq. Conclude that

ppuq

PpB̄ ě uq
Ñ

1 ´ c

c
.
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Subexponential case, ctd.

Examples of subexponential distributions: Pareto, lognormal, and
Weibull. Then PpB ě uq is given by, respectively,

Aη

pA ` uqη
, 1 ´ Φ

ˆ

log u ´ µ

σ

˙

, e´µuη

,

with Φp¨q distribution function of standard normal random variable.

Assumptions imposed on parameters:
˝ In Pareto case: A ą 0 and η ą 1 (to ensure that EB ă 8).
˝ In lognormal case: µ P R and σ ą 0.
˝ In Weibull case: µ ą 0 and η P p0, 1q.

Book: argumentation that residuals of these distributions are
subexponential as well.
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Subexponential case, ctd.

Principle of single big claim: in subexponential regime, event
tȲ p8q ě uu, for u large, is essentially due to single big claim.

Informal backing:
Suppose u is to be exceeded at time t. Then Y ptq is roughly at
´rct “ ´pr ´ λEBqt, so that big claim arriving at time t should have
size at least u ` rct. Leads to approximation, for ∆ Ó 0,

ppuq «

8
ÿ

k“0

λ∆PpB ą u ` rc k∆q Ñ λ

ż 8

0
PpB ą u ` rcsq ds.

This confirms Theorem: performing change of variable v :“ u ` rcs,

ppuq «
λ

rc

ż 8

u

PpB ě vq dv “
λEB
rc

PpB̄ ě uq “
1 ´ c

c
PpB̄ ě uq.
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Subexponential case, ctd.

Exercise 2.5: other technique to find tail of ppuq for B̄ in subclass of S ,
based on Tauberian theorems (one-to-one relation between shape of LST
near origin and tail behavior, if tail of rv is effectively power-law).

Concretely, for δ P p1, 2q, the following equivalence holds:

lim
αÓ0

E e´αZ ´ 1 ` αEZ
αδ

“ η ðñ lim
uÑ8

PpZ ě uq uδ “ ´
η

Γp1 ´ δq
;

here η ą 0 and Γp1 ´ δq ă 0. Likewise, for δ P p0, 1q,

lim
αÓ0

E e´αZ ´ 1
αδ

“ ´η ðñ lim
uÑ8

PpZ ě uq uδ “
η

Γp1 ´ δq
;

here η ą 0 and Γp1 ´ δq ą 0. More general form involves regularly
varying functions.
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Subexponential case, ctd.

What about finite-horizon ruin probability? Focus on ppu, tuq as u Ñ 8,
for given t.

˝ Light-tailed case: by large-deviations argumentation,

lim
uÑ8

1
u
log ppu, tuq “ ´ inf

TPp0,ts
T I

ˆ

1
T

˙

.

(Provide intuitive backing.)
˝ Subexponential case: by principle of single big claim:

ppu, tuq «
λ

rc

ż up1`rctq

u

PpB ě vq dv

“
1 ´ c

c

´

PpB̄ ě uq ´ PpB̄ ě up1 ` rctqq

¯

.
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Heavy traffic

Focus on behavior of Ȳ p8q as c “ 1 ´ λEB{r Ó 0 (in queueing literature
heavy-traffic regime). In this regime safety loading r{pλEBq ´ 1 is
positive but small.

Starting point: Pollaczek-Khinchine formula of Corollary 1.1, i.e.,

E e´αȲ p8q “
rcα

rα ´ λp1 ´ bpαqq
.

Distinguish between light-tailed setting (VarB ă 8) and heavy-tailed
setting (VarB “ 8). Write Ȳcp8q rather than Ȳ p8q.
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Heavy traffic, ctd.
First case VarB ă 8. Clearly Ȳcp8q explodes as c Ó 0, but c Ȳcp8q

converges to non-degenerate limiting random variable:

E e´cαȲcp8q “
rc2α

rcα ´ λp1 ´ bpcαqq

“
rc2α

rcα ´ λ
`

EB cα ´ 1
2ErB2s c2α2 ` Opc3q

˘

“
rc2α

rcα ´ rp1 ´ cqcα ` 1
2λErB2s c2α2 ` Opc3q

Ñ
r

r ` 1
2λErB2sα

,

as c Ó 0. Lévy’s convergence theorem: conclude that c Ȳcp8q converges
to exponentially distributed random variable with mean

λErB2s

2r
cÓ0
Ñ

ErB2s

2EB
.
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Heavy traffic, ctd.

Case VarB “ 8 (or, equivalently, ErB2s “ 8) should be done
differently. Consider special case that, for some δ P p1, 2q and A ą 0,

PpB ě uq „ ´
A

Γp1 ´ δq
u´δ

as u Ñ 8. Tauber: as α Ó 0,

bpαq ´ 1 ` αEB „ Aαδ.

Now, with ζ :“ 1{pδ ´ 1q, cζȲcp8q converges to a non-degenerate
random variable:

E e´cζαȲcp8q “
rc1`ζα

rcζα ´ λp1 ´ bpcζαqq
Ñ

r

r ` λAαδ´1 ,

as c Ó 0. Recognize LST of Mittag-Leffler distribution.
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CHAPTER III: REGIME SWITCHING
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Regime switching: main ideas

˝ Previous chapters: a given net cumulative claim process Y ptq was
considered.

˝ Now: when exogenous finite-state Markov chain is in state i , net
cumulative claim process behaves as Yi ptq.

˝ Extension of time-dependent Pollaczek-Khinchine theorem.
˝ By-product: ruin probability with phase-type (rather than

exponential) killing.
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Regime switching: net cumulative claim process

This chapter: regime-switching (or Markov modulated) version of the
standard Cramér-Lundberg model.

Modulating process, in our case a continuous-time Markov chain Jptq on
t1, . . . , du: regime process or background process.

There are d net cumulative claim processes Yi ptq, all of them
corresponding to a compound Poisson process with drift.

Net cumulative claim process Y ptq evolves as process Yi ptq when
Jptq “ i .
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Regime switching: net cumulative claim process, ctd.

Description of regime process:
˝ Jptq: Markov process with transition rate matrix Q.
˝ pUnqn: sequence of its jump epochs.
˝ We do not assume modulating process is irreducible.
˝ In addition,

qi :“ ´qii “
ÿ

j “i

qij ą 0

for all non-absorbing states i , whereas qi :“ ´qii “ 0 for absorbing
states i .
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Regime switching: net cumulative claim process, ctd.

Description of net cumulative claim process:
˝ Y1ptq, . . . ,Ydptq: independent compound Poisson processes with

drift, evolving independently of Jptq.
˝ Recall: pUnqn is sequence of its jump epochs.
˝ Laplace exponent of Yi ptq is

φi pαq :“ riα ´ λi

´

1 ´ E e´αBpiq
¯

“ riα ´ λi p1 ´ bi pαqq.

˝ Then, in case Jptq “ i for t P rUn,Un`1q, net cumulative claim
process Y ptq locally behaves as Yi ptq:

Y ptq ´ Y pUnq “ Yi ptq ´ Yi pUnq

for all t P rUn,Un`1q.
With Yi p0q “ 0 (for all i “ 1, . . . , d) this mechanism fully defines Y ptq.
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Regime switching: net cumulative claim process, ctd.

U1 U2 U3 U4

t

Y ptq

Figure: Net cumulative claim process Y ptq for regime-switching compound
Poisson process with d “ 2. In this example, Jptq “ 1 for t P r0,U1q and
t P rU2,U3q, whereas Jptq “ 2 for t P rU1,U2q and t P rU3,U4q.
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Regime switching: net cumulative claim process, ctd.
We do not assume that all premium rates ri are positive.
Let S be set of indices i for which ri ď 0; this is set of subordinator
states, i.e., states i for which Yi ptq is non-decreasing with probability 1.

Define

Ȳ ptq :“ sup
sPr0,ts

Y psq,

Ȳi ptq :“ sup
sPr0,ts

Yi psq,

for i P t1, . . . , du.

Goal: analyze

pi pu, tq :“ P
`

Ȳ ptq ě u | Jp0q “ i
˘

“ P
`

Z̄i ptq ě uq,

where Z̄i ptq is Ȳ ptq conditional on Jp0q “ i .
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Regime switching: net cumulative claim process, ctd.

Goal: determine Laplace transform of pi pu, tq with respect to u,
evaluated at a ‘killing epoch’ rather than a deterministic epoch.

Chapter 1: (exponential) killing rate was constantly β.
Now: (exponential) killing rate is βi when Jptq “ i .

Denote killing epoch by Ťβ, where

β “ pβ1, . . . , βdqJ.

(As before, Tβ , with scalar subscript β, still denotes exponentially
distributed random variable with parameter β.)

We aim to evaluate

πi pα,βq :“

ż 8

0
e´αu pi pu, Ťβq du.
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Non-subordinator case

Suppose i P t1, . . . , duzS .

Given that Jp0q “ i , time till either killing or transition of background
process is exponentially distributed with parameter θi :“ βi ` qi (Why?).

To exceed u, this can either happen before this epoch, or (in case event
does not correspond to killing) after background process has jumped to
another state. Hence,

pi pu, Ťβq “ P
`

Ȳi pTθi q ě u
˘

`
ÿ

j “i

qij
θi
δijpuq,

with
δijpuq :“

ż u

0
P

`

Ȳi pTθi q P dv ,Yi pTθi q ` Z̄jpŤβq ě uq,

where Z̄jpŤβq is independent of pȲi pTθi q,Yi pTθi qq.
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Non-subordinator case, ctd.

Evaluate transform (with respect to u) of first term, using results of
Chapter 1.

With ψi p¨q the right-inverse of φi p¨q,
ż 8

0
e´αu P

`

Ȳi pTθi q ě u
˘

du “
1
α

´

1 ´ E e´αȲi pTθi
q
¯

“
1

φi pαq ´ θi

ˆ

φi pαq

α
´

θi
ψi pθi q

˙

.
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Non-subordinator case, ctd.

Evaluate transform (with respect to u) of second term.
Recall: Ȳi pTθi q and Ȳi pTθi q ´ Yi pTθi q are independent (Wiener-Hopf
decomposition), with Ȳi pTθi q ´ Yi pTθi q exponentially distributed with
parameter χi :“ ψi pθi q.

Hence,
ż 8

0
e´αu δijpuq du

“

ż 8

u“0
e´αu

ż u

v“0

ż 8

z“0
P

`

Ȳi pTθi q P dv
˘

χie
´χi zpjpu ´ v ` z , Ťβq dz du

“

ż 8

u“0
e´αu

ż u

v“0

ż 8

w“u´v

P
`

Ȳi pTθi q P dv
˘

χie
´χi pw´u`vqpjpw , Ťβq dw du

(last step: change of variables).

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Non-subordinator case, ctd.
Swap integrals:
ż 8

v“0

ż 8

w“0

ˆ
ż w`v

u“v

e´pα´χi qudu

˙

P
`

Ȳi pTθi q P dv
˘

χie
´χi pw`vqpjpw , Ťβq dw .

Evaluating the inner integral and rearranging terms:

χi

α ´ χi

ż 8

0
e´αvP

`

Ȳi pTθi q P dv
˘

ż 8

0

`

e´χiw ´ e´αw
˘

pjpw , Ťβq dw .

Combining the above,
ż 8

0
e´αu δijpuq du “ ψi pθi qE e´αȲi pTθi

q πjpψi pθi q,βq ´ πjpα,βq

α ´ ψi pθi q
.

Use expression derived for the Laplace transform of Ȳi pTθi q:
ż 8

0
e´αu δijpuq du “ θi

πjpψi pθi q,βq ´ πjpα,βq

φi pαq ´ θi
.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Non-subordinator case, ctd.

Upon multiplying expression of previous slide by qij and summing over
j “ i , following result is obtained.

Proposition
For any α ě 0 and β ą 0, and i P t1, . . . , duzS ,

πi pα,βq “
1

φi pαq ´ θi

ˆ

φi pαq

α
´

θi
ψi pθi q

˙

`

ÿ

j “i

qij
πjpψi pθi q,βq ´ πjpα,βq

φi pαq ´ θi
.
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Subordinator case
Now suppose that i P S . Then Ȳi ptq “ Yi ptq for any t ě 0. Hence

pi pu, Ťβq “ P pYi pTθi q ě uq `
ÿ

j “i

qij
θi
ηijpuq,

with
ηijpuq :“

ż u

0
P pYi pTθi q P dvq P

`

Z̄jpŤβq ě u ´ v
˘

.

First term:
ż 8

0
e´αu P pYi pTθi q ě uq du “

1
α

´

1 ´ E e´αYi pTθi
q
¯

“
1

φi pαq ´ θi

φi pαq

α
.

Second term, observing that ηijpuq is a convolution,
ż 8

0
e´αu ηijpuq du “

θi
θi ´ φi pαq

πjpα,βq.
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Subordinator case, ctd.

Proposition
For any α ě 0 and β ą 0, and i P S ,

πi pα,βq “
1

φi pαq ´ θi

φi pαq

α
´

ÿ

j “i

qij
πjpα,βq

φi pαq ´ θi
.
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Equations in matrix notation
Define vector of transforms

πpα,βq “ pπ1pα,βq, . . . , πdpα,βqqJ.

Write, with κpα,βq the corresponding column vector,

κi pα,βq :“
φi pαq

α
´

θi
ψi pθi q

1ti R Su `
ÿ

j “i

qijπjpψi pθi q,βq1ti R Su.

In addition, let pi , jq-th entry of matrix Mpα,βq be given by

mijpα,βq :“
`

φi pαq ´ θi
˘

1ti “ ju ` qij .

Proposition
For any α ě 0 and β ą 0,

Mpα,βqπpα,βq “ κpα,βq.
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Equations in matrix notation

Hence, for any given α ą 0 and β ą 0, if Mpα,βq´1 exists,

πpα,βq “ Mpα,βq´1 κpα,βq.

Denote by d˝ number of states in t1, . . . , duzS .

For given vector β of killing rates, characterization of Proposition still
contains d˝ unknowns:

ωi pβq :“ ´
θi

ψi pθi q
`

ÿ

j “i

qij πjpψi pθi q,βq

for i P t1, . . . , duzS .

Next goal: identification of these d˝ constants.
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Identification of unknown constants

Three stages: state space of Jptq is
˝ one recurrent class,
˝ one transient class and one recurrent class,
˝ multiple transient classes and one recurrent class.

Proposition (Ivanovs–B–M)

Suppose background process Jptq consists of single (hence recurrent)
class. Let Y1ptq, ...,Ydptq be compound Poisson processes with (not
necessarily negative) drift.
Then, for any componentwise positive vector β, equation
det Mpα,βq “ 0 has d˝ solutions for α P C that have positive real part.
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Identification of unknown constants, ctd.

Start with case of one recurrent class.
Define matrix Mκ,i pα,βq as matrix Mpα,βq but with i-th column
replaced by κpα,βq.

Then, by Mpα,βqπpα,βq “ κpα,βq and Cramer’s rule,

πi pα,βq “
det Mκ,i pα,βq

det Mpα,βq
.

As πi pα,βq is finite, any zero of denominator should be zero of the
numerator. Because Jptq is irreducible, we can apply Proposition:
det Mpα,βq “ 0 has d˝ zeroes in right half of complex plane.

Assume that these zeroes have multiplicity 1; we call them α1, . . . , αd˝

(each of them depending on vector of killing rates β).
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Identification of unknown constants, ctd.

For given β and i “ 1, . . . , d and j “ 1, . . . , d˝,

det Mκ,i pαj ,βq “ 0.

This seemingly yields d ˆ d˝ equations to determine the d˝ unknowns ωi

(for i R S). However, all equations that correspond to specific index
j P t1, . . . , d˝u effectively provide same information.

This is shown as follows.
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Identification of unknown constants, ctd.
Let mi pα,βq be i-th column of Mpα,βq. Suppose (for fixed i) that
det Mpα,βq “ 0 and det Mκ,i pα,βq “ 0 for some α P C with a positive
real part. Hence Mpα,βq and Mκ,i pα,βq are singular, so that

d
ÿ

j“1

mjpα,βq vj “ 0,
ÿ

j “i

mjpα,βq uj ` κpα,βq ui “ 0

for some u and v . Therefore, for any i 1 “ i ,

0 “ ´ui 1

d
ÿ

j“1

mjpα,βq vj ` vi 1

ÿ

j “i

mjpα,βq uj ` vi 1 κpα,βq ui

“ ´ui 1vimi pα,βq `
ÿ

j “i,i 1

pvi 1uj ´ ui 1vjq mjpα,βq ` vi 1ui κpα,βq.

We found linear combination of columns of Mκ,i 1 pα,βq that equals 0.
Hence, Mκ,i 1 pα,βq is singular, and det Mκ,i 1 pα,βq “ 0. Conclude that,
for j fixed, varying i does not provide any additional constraints.
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Identification of unknown constants, ctd.
Hence, for any j “ 1, . . . , d˝ we can focus on det Mκ,1pαj ,βq “ 0 only
(we take i “ 1, that is).

Let M̄ijpα,βq represent pd ´ 1q ˆ pd ´ 1q matrix which results after
deleting i-th row and j-th column from Mpα,βq. Recall that

κi pα,βq “
φi pαq

α
` ωi pβq1ti R Su,

the equation det Mκ,1pαj ,βq “ 0 can be rewritten as

ÿ

iPS

φi pαjq

αj
p´1q1`idet M̄i1pαj ,βq

`
ÿ

iRS

ˆ

φi pαjq

αj
` ωi pβq

˙

p´1q1`idet M̄i1pαj ,βq “ 0.

We thus obtain d˝ equations (linear in d˝ unknowns ω1pβq, . . . , ωd˝ pβq).
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Identification of unknown constants, ctd.
Now: single transient class, say T Ă t1, . . . , du, besides the recurrent
states (which could correspond to single class or multiple classes).

We know how to compute πi pα,βq for any i R T . For i P T ,
ÿ

jPT

mijpα,βqπjpαj ,βq “ κi pα,βq ´
ÿ

jRT

mijpα,βqπjpα,βq.

Right-hand side we know; denote it by κ̄i pα,βq. Define d̄ :“ |T | and
d̄˝ :“ |T zS |. In addition, define d̄ ˆ d̄ matrix

M̄pα,βq :“ pmijpα,βqqi,jPT ,

and let d̄-dimensional vector π̄pα,βq represent the entries of πpα,βq

that correspond to states in T . As a result, we have found the equation

M̄pα,βq π̄pα,βq “ κ̄pα,βq.
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Identification of unknown constants, ctd.
Suppose det M̄pα,βq “ 0 has d̄˝ zeroes in the right half of the complex
plane, then we would be done.

In light of Proposition, we have to verify that entries of M̄pα,βq are of
the form

m̄ijpα,βq :“
`

φi pαq ´ θi
˘

1ti “ ju ` q̄ij ,

with transition rates q̄ij corresponding to single recurrent class.

Rewrite diagonal elements of M̄pα,βq by adapting diagonal elements of
rate matrix and killing rates:

mii pα,βq “ φi pαq ´ βi ` qii “ φi pαq ´ β̄i ` q̄ii ,

with

q̄ii :“ ´
ÿ

jPTztiu

qij , β̄i :“

˜

βi `
ÿ

jRT

qij

¸

.

Conclude: M̄pα,βq has desired form.
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Identification of unknown constants, ctd.

Hence, Proposition applies, implying that M̄pα,βq “ 0 indeed has d̄˝

zeroes in right half of complex plane (for any componentwise positive
vector β).

We can therefore identify ωi pβq for i P T zS by solving linear system, as
before.
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Identification of unknown constants, ctd.

Finally: multiple transient classes, say T1, . . . ,TK . Let R denote union of
all recurrent states.

Write Tk ⇝ Tk 1 , with k, k 1 P t1, . . . ,Ku, if there is a direct transition
from a state in Tk to a state in Tk1 (i.e., if there are i P Tk and j P Tk1

such that qij ą 0).

Define ‘layers’ recursively: C0 :“ R, and

Cn :“

#

Tk : for all k 1 such that Tk ⇝ Tk 1 it holds that k 1 P

n´1
ď

m“0

Cm

+

.

Observe: number of layer sets Cn is (including C0) at most K .

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Identification of unknown constants, ctd.

Above: computation of πi pα,βq for i P R and i P C1. Now: πi pα,βq for
i P Cn, knowing πi pα,βq for i P R,C1, . . . ,Cn´1.

Suppose Tk Ď Cn. As states in Cn have no direct transitions to classes
outside Cn´1, we have for i P Tk that

ÿ

jPTk

mijpα,βqπjpα,βq “ κi pα,βq ´
ÿ

jPCn´1

mijpα,βqπjpα,βq.

As right-hand side contains known quantities only, analysis is as in case
of single transient class. Specifically, number of zeroes (in right half of
complex plane) of determinant of pmijpα,βqqi,jPTk

equals number of
states in Tk that do not correspond to non-decreasing subordinators.
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CL over phase-type horizon

Chapter 1: conventional CL model, with focus on double transform of
ppu, tq. Transform over time: ruin over exponentially distributed interval.
Now: extension to class of phase-type intervals P.

Class P is relevant, as any distribution on the positive half-line can be
approximated arbitrarily closely by distribution in P.

This actually holds true for the smaller class P˝ Ă P of mixtures of
Erlang distributions.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



CL over phase-type horizon, ctd.

Phase-type distribution: absorption time of a continuous-time Markov
chain. That is, each distribution in P is characterized by

˝ a finite state space t1, ..., du,
˝ initial probability vector δ P Rd ,
˝ d ˆ d transition rate matrix F “ pfijq

d
i,j“1 (i.e., it has non-positive

diagonal elements, non-negative non-diagonal elements, and row
sums equal to zero),

˝ non-negative exit vector f .
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CL over phase-type horizon, ctd.

We define additional transition rate matrix, with diagpf q denoting
diagonal matrix with f on its diagonal,

F̄ :“

ˆ

F ´ diagpf q f
0J 0

˙

.

Dimension of F̄ is pd ` 1q ˆ pd ` 1q, where state d ` 1 is absorbing
state. Note that F̄ is genuine transition rate matrix: row sums equal 0.

Definition of phase-type random variable: time it takes to reach absorbing
state, if initial state has been drawn according to distribution δ.
Rule out matrices F̄ in which, starting from any state i with δi ą 0, state
d ` 1 is not eventually reached.
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CL over phase-type horizon, ctd.
Now consider compound Poisson process with negative drift, say Y ptq.
Consider P P P characterized by parameters pd , δ,F , f q.

Objective: evaluate
ż 8

0

ż 8

0
e´αuppu, tqPpP P dtq du.

Evaluation of this transform falls in our framework:
˝ let Y1ptq, ...,Ydptq be independent copies of Y ptq, such that

compound Poisson process with drift is same for any state of
background process (say with Laplace exponent φpαq),

˝ to represent the killed state, let Yd`1ptq ” 0,
˝ choose Q “ F and β “ f such that absorption in state d ` 1

corresponds to killing.
Immediate: above transform equals

řd
i“1 δiπi pα,βq.
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CL over phase-type horizon, ctd.

Any distribution on the positive half-line can be approximated arbitrarily
closely by distribution in P˝, i.e., the class of mixtures of Erlang
distributions.

Let δ ” pδ1, . . . , δdq be probability vector, and Ekpβq be Erlang
distributed rv with parameters k P N and β ą 0. This means

PpEkpβq P dtq “ e´βt β
ktk´1

pk ´ 1q!
dt.

Then P P P˝ is characterized by δ, β P Rd
`:

PpP P dtq “

d
ÿ

i“1

δi P
`

Eki pβi q P dt
˘

.
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CL over phase-type horizon, ctd.
Hence, to evaluate, for P P P˝,

ż 8

0

ż 8

0
e´αuppu, tqPpP P dtq du,

it suffices to be able to evaluate it for an Ekpβq-distributed horizon.

Indeed, if we can compute

πrkspα, βq :“

ż 8

0

ż 8

0
e´αuppu, tqPpEkpβq P dtq du

“

ż 8

0

ż 8

0
e´αuppu, tq e´βt β

ktk´1

pk ´ 1q!
dt du,

then transform can be expressed as

d
ÿ

i“1

δi π
rki spα, βi q.
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CL over phase-type horizon, ctd.

But πrkspα, βq can be computed easily from πpα, βq ” πr1spα, βq, i.e.,
the transform corresponding to the ruin probability over exponentially
distributed horizon.
To this end, define

πpℓqpα, βq :“
dℓ

dβℓ
πpα, βq.

Proposition
For k P N,

πrkspα, βq “

k´1
ÿ

ℓ“0

p´βqℓ

ℓ!
πpℓqpα, βq.
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CL over phase-type horizon, ctd.

Proof. Definition of πrkspα, βq implies that

πrkspα, βq “ ´
p´βqk

pk ´ 1q!

ˆ

dk´1

dβk´1
πpα, βq

β

˙

.

Observing that, by the binomium,

dk´1

dβk´1
πpα, βq

β
“ ´

k´1
ÿ

ℓ“0

ˆ

k ´ 1
ℓ

˙

πpℓqpα, βq
pk ´ 1 ´ ℓq!

p´βqk´ℓ
,

the stated follows immediately.
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Resampling

At Poisson instants (rate ν) the ‘parameters’ of the net cumulative claim
process become pλi , bi pαq, ri q with probability pi , where i “ 1, . . . , d ,
independent of history.

Motivation: every now and then, environment randomly changes,
modeled by resampling.

This fits in model of this chapter, when picking

Q “ ν 1pJ ´ νId ,

with 1 an all-ones vector and Id the d-dimensional identity matrix.
(Check!)
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Chapter 3: concluding remarks

In Exercise 3.1 you will consider a modulating process with one transient
and one recurrent state.

In Exercise 3.2 you will consider a two-dimensional modulating process
with one states corresponding to a non-decreasing subordinator.
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CHAPTER IV: INTEREST AND
TWO-SIDED JUMPS
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Interest & two-sided jumps: main ideas

Compared to conventional CL analysis, three additional elements are
introduced:

˝ Insurance firm receives dividend over its reserve level. We apply
interest rate r˝ ě 0.

˝ Besides claims, leading to negative jumps of reserve level, we also
allow positive jumps (to be thought of as capital injections).

˝ As before we aim at characterizing probability of ruin (transformed
with respect to the initial capital surplus level) before exponentially
distributed time, but now jointly with three other quantities: time of
ruin, undershoot, and overshoot. See also Exercise 1.2.
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Interest & two-sided jumps: main ideas, ctd.
Objective: analyze, for a given initial capital surplus level u,

ppu, t,γq :“ E
`

e´γ1τpuq´γ2Xupτpuq´q´γ3Xupτpuqq1tτpuq ď tu
˘

,

where γ ” pγ1, γ2, γ3qJ, by evaluating its transform.

With Tβ exponentially distributed time with parameter β, we consider

πpα, β,γq :“

ż 8

0
e´αuβe´βtppu, t,γq dt du “

ż 8

0
e´αuppu,Tβ ,γq du.

Plugging in γ “ 0, we recover objects of Chapter 1.

For conciseness, in the sequel we write, for given β ą 0 and γ such that
γ1, γ2 ě 0 and γ3 ď 0 (Why these signs?),

ppuq ” ppu,Tβ ,γq “ E
`

e´γ1τpuq´γ2Xupτpuq´q´γ3Xupτpuqq1tτpuq ď Tβu
˘

.
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Interest & two-sided jumps: main ideas, ctd.

First model extension:
˝ As before, claims arriving according to Poisson process,

corresponding to downward jumps in Xuptq. Here λ´ ě 0 is arrival
rate, and b´pαq the LST of generic claim size B´.

˝ In addition, there are upward jumps in Xuptq, which could for
instance represent capital injections, arriving according to Poisson
process with rate λ` ě 0. We let b`pαq be LST of generic upward
jump B`.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Interest & two-sided jumps: main ideas, ctd.

Second model extension: insurance company receives interest (at rate
r˝ ě 0) over its current reserve level.

Hence, with Si denoting i-th jump epoch of the reserve level process
Xuptq, between two consecutive jump epochs Si and Si`1 process Xuptq
evolves according to differential equation

dXuptq “ r dt ` r˝Xuptq dt.

It follows that, for t P pSi ,Si`1q,

Xuptq “ XupSi q e
r˝

pt´Si q `
r

r˝

`

er
˝

pt´Si q ´ 1
˘

.
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Interest & two-sided jumps: main ideas, ctd.

t

Xuptq

u

Xupτpuqq

Xupτpuq´q

Figure: Sample path of Xuptq until τpuq. Upward jumps are distributed as
generic random variable B`, downward jumps are distributed as generic
random variable B´.
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Exponential upward jumps
First step: by ‘classical Markovian reasoning’, with λ :“ λ´ ` λ`,

ppuq “ e´γ1 ∆t
´

λ´ ∆t

ż u

0
PpB´ P dvq ppu ´ vq

` λ´ ∆t

ż 8

u

PpB´ P dvq e´γ2u e´γ3pu´vq

` λ` ∆t

ż 8

0
µe´µvppu ` vq dv

` p1 ´ λ∆t ´ β∆tq ppu ` r ∆t ` r˝u∆tq
¯

` op∆tq.

˝ Use that between jumps process grows according to solution of
differential equation.

˝ In considered interval of length ∆t time till ruin τpuq grows by ∆t.
˝ Undershoot Xupτpuq´q and overshoot Xupτpuqq can be assigned

their values when surplus level drops below 0 (due to negative jump
of size at least u).
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Exponential upward jumps, ctd.
Linearize e´γ1 ∆t and ppu ` r ∆t ` r˝u∆tq: as ∆t Ó 0,

ppuq “ ppu ` r ∆t ` r˝u∆tq ` λ´ ∆t

ż u

0
PpB´ P dvq ppu ´ vq

` λ´ ∆t

ż 8

u

PpB´ P dvq e´γ2u e´γ3pu´vq

` λ` ∆t

ż 8

0
µe´µvppu ` vq dv ´ pγ1 ` λ` βq∆t ppuq ` op∆tq.

Subtract ppu ` r ∆t ` r˝u∆tq, and divide by ∆t: as ∆t Ó 0,

´
ppu ` r ∆t ` r˝u∆tq ´ ppuq

r ∆t ` r˝u∆t
pr ` r˝uq “ λ´

ż u

0
PpB´ P dvq ppu ´ vq

` λ´

ż 8

u

PpB´ P dvq e´γ2u e´γ3pu´vq

` λ`

ż 8

0
µe´µvppu ` vq dv ´ pγ1 ` λ` βq ppuq ` op1q.
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Exponential upward jumps, ctd.

Then take limit ∆t Ó 0, to obtain following integro-differential equation.

Lemma
For any u ą 0,

´p1puq pr ` r˝uq “ λ´

ż u

0
PpB´ P dvqppu ´ vq

` λ´

ż 8

u

PpB´ P dvq e´γ2u e´γ3pu´vq

` λ`

ż 8

0
µe´µvppu ` vq dv ´ pγ1 ` λ` βq ppuq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Exponential upward jumps, ctd.

Next goal is to evaluate π̄pαq ” π̄pα, β,γq :“ απpα, β,γq

(interpretation: ppuq in which the initial reserve level u is exponentially
distributed with parameter α).

Transform full integro-differential equation of Lemma with respect to u:
multiply both sides by αe´αu, and integrate over u P p0,8q.

Objective: obtain equation that is fully expressed in terms of π̄pαq. We
do so by considering each term separately.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Exponential upward jumps, ctd.

˝ First term LHS: by integration by parts,

´

ż 8

0
p1puq r αe´αu du “ rα

`

pp0q ´ π̄pαq
˘

.

˝ Second term LHS:

´

ż 8

0
p1puq r˝u αe´αu du “ r˝α

ż 8

0
ppuq

`

e´αu ´ u αe´αu
˘

du

“ r˝απ̄1pαq,

using standard identity

π̄1pαq “
π̄pαq

α
´

ż 8

0
u αe´αuppuq du.
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Exponential upward jumps, ctd.

˝ First term RHS: upon interchanging the order of the integrals,

λ´

ż 8

0

ˆ
ż u

0
PpB´ P dvq ppu ´ vq dv

˙

αe´αu du

“ λ´

ż 8

0
e´αv

ˆ
ż 8

v

ppu ´ vqαe´αpu´vqdu

˙

PpB´ P dvq

“ λ´b´pαqπ̄pαq.

˝ Second term RHS:

λ´

ż 8

0

ˆ
ż 8

u

PpB´ P dvqe´γ2u e´γ3pu´vq

˙

αe´αu du

“ λ´α

ż 8

0

eγ3v ´ e´pα`γ2qv

α ` γ2 ` γ3
PpB´ P dvq “ λ´α

b´p´γ3q ´ b´pα ` γ2q

α ` γ2 ` γ3
.

Note: α “ ´γ2 ´ γ3 is a removable singularity (Why?).

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Exponential upward jumps, ctd.

˝ Third term RHS: applying transformation w :“ u ` v ,

λ`

ż 8

0

´

ż 8

0
µe´µvppu ` vq dv

¯

αe´αu du

“ λ`

µ

µ´ α
π̄pαq ´ λ`

α

µ´ α
π̄pµq.

Notice: α “ µ is removable singularity, but requires some extra care.
˝ Fourth term RHS: by the definition of π̄pαq,

´

ż 8

0
pγ1 ` λ` βq ppuqαe´αu du “ ´pγ1 ` λ` βq π̄pαq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Exponential upward jumps, ctd.

Introduce some notation: we let A :“ ´pγ1 ` βq{r˝ and

F pαq :“ F̄ pαq `
A

α
, F̄ pαq :“

r

r˝
´
λ´

r˝

1 ´ b´pαq

α
`
λ`

r˝

1
µ´ α

,

G pαq :“
λ´

r˝

b´p´γ3q ´ b´pα ` γ2q

α ` γ2 ` γ3
´

r

r˝
pp0q ´

λ`

r˝

1
µ´ α

π̄pµq.

Proposition
For any α ě 0, π̄p¨q fulfils the differential equation

π̄1pαq “ F pαq π̄pαq ` G pαq.
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Exponential upward jumps, ctd.

Differential equation of Proposition is routinely solved using the method
of variation of constants. With F‹pαq the primitive of F pαq:

π̄pαq “

ˆ
ż α

0
G pηq exp

`

´ F‹pηq
˘

dη ` K

˙

exp
`

F‹pαq
˘

.

As a consequence of the fact that F‹pαq Ñ 8 as α Ñ 8 (Check!), we
have that π̄p8q “ pp0q P p0, 1q necessarily implies that

K “ ´

ż 8

0
G pηq exp

`

´ F‹pηq
˘

dη.

Hence,

π̄pαq “ ´

ˆ
ż 8

α

G pηq exp
`

´ F‹pηq
˘

dη

˙

exp
`

F‹pαq
˘

.
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Exponential upward jumps, ctd.

Left: determination of the two unknown constants pp0q and π̄pµq. To
identify these, write G pαq “ pp0qG1pαq ` π̄pµqG2pαq ` G3pαq, where

G1pαq :“ ´
r

r˝
, G2pαq :“ ´

λ`

r˝

1
µ´ α

, G3pαq :“
λ´

r˝

b´p´γ3q ´ b´pα ` γ2q

α ` γ2 ` γ3
.

Analogously, define I pαq as pp0q I1pαq ` π̄pµq I2pαq ` I3pαq, where

Ikpαq :“

ż 8

α

Gkpηq exp
`

´ F‹pηq
˘

dη.

To obtain constraints that are used to determine pp0q and π̄pµq, note
that if for some α we have that F‹pαq “ 8, then necessarily I pαq “ 0,
due to finiteness of π̄pαq.
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Exponential upward jumps, ctd.
˝ Shape of F p¨q reveals that, for some constant D0 ă 0,

lim
αÓ0

F‹pαq

logα
“ D0,

which implies that F‹pαq Ñ 8 as α Ó 0, and hence I p0q “ 0 (so that
K “ 0). We find

pp0qI1p0q ` π̄pµqI2p0q “ ´I3p0q.

˝ Analogously, for some constants D̄µ P R and Dµ ă 0,

lim
αÒµ

F‹pαq ´ D̄µ
logpµ´ αq

“ Dµ,

so that F‹pαq Ñ 8 as α Ò µ. Hence, I pµq “ 0, and therefore

pp0qI1pµq ` π̄pµqI2pµq “ ´I3pµq.
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Exponential upward jumps, ctd.

Hence: two linear equations, in equally many unknowns. We find

pp0q “ ´
I3p0qI2pµq ´ I3pµqI2p0q

I1p0qI2pµq ´ I1pµqI2p0q
, π̄pµq “ ´

I1p0qI3pµq ´ I1pµqI3p0q

I1p0qI2pµq ´ I1pµqI2p0q
.

We have thus arrived at final result.

Theorem
If r ą 0, then

π̄pαq “ ´

ˆ
ż 8

α

G pηq exp
`

´ F‹pηq
˘

dη

˙

exp
`

F‹pαq
˘

,

with pp0q and π̄pµq given above.
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Exponential upward jumps, ctd.
Next result: alternative way to describe π̄p¨q: through a power series
expansion.

Writing, for coefficients f̄ℓ and gℓ,

F̄ pαq “

8
ÿ

ℓ“0

f̄ℓα
ℓ, G pαq “

8
ÿ

ℓ“0

gℓα
ℓ,

we have found differential equation

π̄1pαq “

˜

8
ÿ

ℓ“0

f̄ℓα
ℓ `

A

α

¸

π̄pαq `

8
ÿ

ℓ“0

gℓα
ℓ.

Writing cℓ :“ π̄pℓqp0q, this differential equation can be rewritten to

8
ÿ

ℓ“0

cℓ`1

ℓ!
αℓ “

˜

8
ÿ

ℓ“0

f̄ℓα
ℓ `

A

α

¸

8
ÿ

ℓ“0

cℓ
ℓ!
αℓ `

8
ÿ

ℓ“0

gℓα
ℓ.
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Exponential upward jumps, ctd.

Collect terms corresponding to same power in both sides, coefficients ck
can be determined. After some algebra, we find that ck obey following
recursion.

Proposition
The power series expansion of π̄pαq is

ř8

ℓ“0 cℓ α
ℓ{ℓ!, where c0 “ 0 and,

for ℓ P N,

cℓ`1 “

ˆ

1
ℓ!

´
A

pℓ` 1q!

˙´1
˜

ℓ
ÿ

m“0

f̄mcℓ´m ` gℓ

¸

.
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Relaxation of exponentiality assumptions

Seeming drawback: exponentiality assumptions imposed.

Concretely, π̄pαq corresponds to the situation in which
˝ initial reserve level,
˝ killing, and
˝ upward jumps

are assumed exponentially distributed.

What can we do about this?
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Relaxation of exponentiality assumptions, ctd.

Section 3.4: approximate distribution on the positive half-line by a
distribution in the class of phase-type distributions P. Even smaller class
of distributions suffices: P˝, class of mixtures of Erlang distributions.

For instance: any number z ą 0 can be approximated arbitrarily closely
by Erlang distribution with shape parameter k and scale parameter k{z ,
with k large.

Goal: compute ppU,T ,γq with initial level U and time horizon T in P˝.
Extends results of Section 4.3, where we found π̄pαq “ ppUα,Tβ ,γq,
with Uα exponentially distributed rv with mean α´1.

Section 3.4: to deal with distributions in P˝, it suffices to deal with U
and T Erlang distributed. Relying on Proposition 3.5, translate results
for U or T being exponentially distributed to their Erlang counterpart.
Following example presents explicit procedure, for Erlang distributed
initial reserve level U.
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Relaxation of exponentiality assumptions, ctd.
Let initial level U be Erlang with parameters k and α.

Idea: use Proposition 3.5. Requires derivatives π̄pℓqp¨q. We know π̄pαq, so
our differential equation gives

π̄p1qpαq “ F pαqπ̄pαq ` G pαq.

But then also

π̄p2qpαq “ F p1qpαqπ̄pαq ` F pαqπ̄p1qpαq ` G p1qpαq

“

´

F p1qpαq ` pF pαqq2
¯

π̄pαq ` F pαqG pαq ` G p1qpαq.

This way, we can compute all π̄pℓqpαq recursively in terms of π̄pαq.
Concretely (Check!), π̄pℓqpαq “ Aℓpαq π̄pαq ` Bℓpαq, where Aℓp¨q and
Bℓp¨q follow by

Aℓ`1pαq “ A1
ℓpαq ` AℓpαqF pαq, Bℓ`1pαq “ AℓpαqG pαq ` B 1

ℓpαq;

recursion is initialized by A1pαq “ F pαq and B1pαq “ G pαq.
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Relaxation of exponentiality assumptions, ctd.

˝ When upward jumps are distributed as mixture of exponentials, with
density

k
ÿ

i“1

gi e
´µiv

for some k P N, constants g1, . . . , gk , positive parameters µ1, . . . , µk

(such that g1{µ1 ` ¨ ¨ ¨ ` gk{µk equals 1), and v ě 0: analysis can
be extended immediately.
New functions F p¨q and G p¨q have poles at µ1, . . . , µk ; function G p¨q

contains unknowns π̄pµ1q, . . . , π̄pµkq. Resulting k ` 1 unknowns
(i.e., π̄pµ1q, . . . , π̄pµkq and pp0q) can be determined as before.

˝ When upward jumps are Erlang distributed: analysis becomes much
harder; see short account in book.
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CHAPTER V: ALTERNATING
NET CUMULATIVE CLAIM PROCESS
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Alternating net cumulative claim process: main ideas

This chapter: net cumulative claim process displays different behavior
above and below threshold v P p´8, uq, with u ą 0 denoting initial
reserve level.

Denote resulting net cumulative claim process by Yv ptq and its running
maximum process by Ȳv ptq, and focus on evaluating the ruin probability,
i.e.,

ppu, v , tq :“ PpȲv ptq ě uq.
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Alternating net cumulative claim process: model

Model description:
˝ When Yv ptq is below v , claim arrival rate is λ´, premium rate is r´

and claims have LST b´pαq (also when claim under consideration is
such that corresponding jump process Ȳv ptq exceeds v).

˝ When Yv ptq is above v , claim arrival rate is λ`, premium rate is r`
and claims have LST b`pαq.

We focus on the (somewhat more complicated) variant that v P p0, uq;
case that v P p´8, 0s can be dealt with analogously.

Object of interest: probability ppu, v ,Tβq of ruin before exponentially
distributed epoch Tβ .
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Scale functions

Consider net cumulative claim process Y ptq in non-alternating setting,
i.e., with claim arrival rate λ, premium rate r , and claim-size distribution
having LST bpαq.

We focus on computing, for u´ ą 0, u` ě 0 and β ě 0,

δ´pu´, u`, βq :“ Ppσpu´q ď mintτpu`q,Tβuq,

δ`pu´, u`, βq :“ Ppτpu`q ď mintσpu´q,Tβuq;

here τpu`q is first epoch that Y ptq enters ru`,8q and σpu´q is first
epoch that Y ptq enters p´8,´u´s. Note: observe that
Y pσpu´qq “ ´u´ (Why?).

Laplace exponent φpαq of the process Y ptq is defined as before:
φpαq “ rα ´ λp1 ´ bpαqq.

Intermediate goal: evaluate δ´pu´, u`, βq and δ`pu´, u`, βq.
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Scale functions, ctd.
Define scale function W pβqpuq as the function whose Laplace-Stieltjes
transform is

ż 8

0
e´αuW pβqpuq du “

1
φpαq ´ β

.

(Exists; see Kyprianou book.)

Second scale function:

Z pβqpuq :“ 1 ` β

ż u

0
W pβqpxq dx .

Swapping order of integrals:
ż 8

0
e´αuZ pβqpuq du “

1
α

` β

ż 8

0

ż 8

x

e´αu W pβqpxq du dx

“
1
α

`
β

α

1
φpαq ´ β

.
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Scale functions, ctd.

In Chapter 1 we characterized distribution of Ȳ pTβq in terms of the
Laplace exponent φpαq and its inverse ψpβq. First lemma: alternative
representation.

Lemma
For any u ą 0 and β ě 0,

PpȲ pTβq ą uq “ Z pβqpuq ´
β

ψpβq
W pβqpuq.

Proof. Verify that transform (with respect to u, that is) coincides with
πpα, βq. This requires an easy calculation (Check!).
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Scale functions, ctd.
Second lemma: useful alternative expressions for the target quantities.

Lemma
For any u´ ą 0, u` ě 0, and β ě 0,

δ´pu´, u`, βq “ E
`

e´βσpu´q 1tσpu´q ď τpu`qu
˘

,

δ`pu´, u`, βq “ E
`

e´βτpu`q 1tτpu`q ď σpu´qu
˘

.

Proof. We establish claim for δ´pu´, u`, βq; other claim analogous.
Applying integration by parts,

δ´pu´, u`, βq “

ż 8

0
βe´βt Ppσpu´q ď t, σpu´q ď τpu`qq dt

“

ż 8

0
e´βt Ppσpu´q P dt, σpu´q ď τpu`qq

“ E
`

e´βσpu´q 1tσpu´q ď τpu`qu
˘

.
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Scale functions, ctd.

Third lemma: translation in terms of scale functions for infinite horizon
case.

Lemma
Assume EY p1q ă 0, or equivalently φ1p0q ą 0. Then, for any u´ ą 0,
u` ě 0,

δ´pu´, u`, 0q “
W p0qpu`q

W p0qpu` ` u´q
.
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Scale functions, ctd.

Proof. Consider identity

PpȲ p8q ă u`q “ PpȲ p8q ă u` ` u´qPpσpu´q ď τpu`qq,

where we use Y pσpu´qq “ ´u´ & strong Markov property. Due to
EY p1q ă 0 both PpȲ p8q ă u`q and PpȲ p8q ă u` ` u´q are positive
so that

δ´pu´, u`, 0q “
PpȲ p8q ă u`q

PpȲ p8q ă u` ` u´q
.

Hence: left to prove that PpȲ p8q ă uq is proportional to W p0qpuq.
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Scale functions, ctd.

The proportionality we show by establishing that transforms of both
objects are proportional. Indeed, by Corollary 1.1,
ż 8

0`

e´αu PpȲ p8q ă uq du “
1
α
PpȲ p8q “ 0q `

1
α

ż 8

0`

e´αu PpȲ p8q P duq

“
1
α

ż 8

0
e´αu PpȲ p8q P duq “

φ1p0q

φpαq
,

which is proportional to 1{φpαq, i.e., transform of W p0qpuq.
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Scale functions, ctd.

Theorem
For any u´ ą 0, u` ě 0 and β ą 0,

δ´pu´, u`, βq “
W pβqpu`q

W pβqpu` ` u´q
.
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Scale functions, ctd.

Proof. Study process Y ptq, for β ą 0, under exponential
change-of-measure with ‘twist’ ´ψpβq ă 0: calling alternative probability
model Q, Laplace exponent under Q is

φQpαq “ φpα ` ψpβqq ´ φpψpβqq “ φpα ` ψpβqq ´ β.

New process has negative mean: φ1pψp0qq ą 0, in combination with
(i) the right inverse ψpβq is increasing in β and (ii) φpαq is increasing for
α ą ψpβq, yields

EQY p1q “ ´φ1
Qp0q “ ´φ1pψpβqq ă 0.

See Figure.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Scale functions, ctd.

α

φpαq

ψpβq

β

α

φpαq

ψp0q ψpβq

β

Figure: Functions φpαq with φ1
p0q ą 0 (left panel) and φpαq with φ1

p0q ă 0
(right panel). In former case ψpβq ą ψp0q “ 0, whereas in latter case
ψpβq ą ψp0q ą 0. Observe that in both cases φ1

pψpβqq ą 0.
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Scale functions, ctd.
Likelihood ratio connecting P and Q:

dPpY ptq “ xq

dQpY ptq “ xq
“ eβteψpβq x ;

to see this, observe that
ż 8

´8

e´αx QpY ptq P dxq “ EQ e´αY ptq “ E e´pα`ψpβqqY ptq´βt

“ e´βt

ż 8

´8

e´pα`ψpβqqx PpY ptq P dxq.

Third Lemma, which we can apply because EQY p1q ă 0:

Qpσpu´q ď τpu`qq “
QpȲ p8q ă u`q

QpȲ p8q ă u` ` u´q
.

On the other hand, by applying likelihood ratio and Second Lemma,

Qpσpu´q ď τpu`qq “ E
`

e´βσpu´qe´ψpβq Y pσpu´qq1tσpu´q ď τpu`qu
˘

“ eψpβqu´ δ´pu´, u`, βq.
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Scale functions, ctd.

Combining above findings,

δ´pu´, u`, βq “ e´ψpβq u´
QpȲ p8q ă u`q

QpȲ p8q ă u` ` u´q

“
eψpβq u` QpȲ p8q ă u`q

eψpβq pu``u´q QpȲ p8q ă u` ` u´q
.

Left to prove: eψpβq u QpȲ p8q ă uq is proportional to W pβqpuq. Idea:
show that their transforms match up to multiplicative constant:

ż 8

0`

e´αueψpβq u QpȲ p8q ă uq du “
φ1
Qp0q

φQpα ´ ψpβqq
“
φ1pψpβqq

φpαq ´ β
,

which is proportional to 1{pφpαq ´ βq. Stated follows by recalling that
1{pφpαq ´ βq is transform of W pβqpuq.
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Scale functions, ctd.

Theorem
For any u´ ą 0, u` ě 0 and β ą 0,

δ`pu´, u`, βq “ Z pβqpu`q ´ Z pβqpu` ` u´q
W pβqpu`q

W pβqpu` ` u´q
.
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Scale functions, ctd.
Proof. We first decompose

δ`pu´, u`, βq “ E
`

e´βτpu`q 1tτpu`q ă 8u
˘

´

E
`

e´βτpu`q 1tσpu´q ă τpu`qu
˘

.

First term, by Equation (1.2) and equivalence of tτpuq ă tu and
tȲ ptq ą uu,

E
`

e´βτpu`q 1tτpu`q ă 8u
˘

“ PpTβ ą τpu`qq “ PpȲ pTβq ą u`q,

which we can evaluate in terms of scale functions relying on First Lemma.
In addition, using the strong Markov property,

E
`

e´βτpu`q 1tσpu´q ă τpu`qu
˘

“ Ppσpu´q ă τpu`q ă Tβq

“ Ppσpu´q ă Tβ , σpu´q ă τpu`qqPpτpu` ` u´q ă Tβq.
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Scale functions, ctd.

Combining above findings:

δ`pu´, u`, βq “ PpȲ pTβq ą u`q ´ δ´pu´, u`, βqPpȲ pTβq ą u` ` u´q.

Using previous Theorem and First Lemma, this yields desired expression.
Here use that (Check!)

PpȲ pTβq ą u`q ´ δ´pu´, u`, βqPpȲ pTβq ą u` ` u´q

“ Z pβqpu`q ´
β

ψpβq
W pβqpu`q ´

W pβqpu`q

W pβqpu` ` u´q

ˆ

Z pβqpu` ` u´q ´
β

ψpβq
W pβqpu` ` u´q

˙

,

which equals right-hand side of claimed equality.
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Decomposition

Goal: evaluating ppu, v ,Tβq, i.e., probability of Yv ptq exceeding level u
before time Tβ . We do so working with a decomposition.

Key quantity is first passage time

τpwq :“ inftt ě 0 : Yv ptq ě w |Yv p0q “ 0u.

In addition, for y P pv , uq,

τy puq :“ inftt ě 0 : Yv ptq ě u |Yv p0q “ yu,

σy pvq :“ inftt ě 0 : Yv ptq ď v |Yv p0q “ yu.

Note that in definition of σy pvq we could have replaced ‘ď v ’ by ‘“ v ’
(Why?).
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Decomposition, ctd.

Crucial role is played by overshoot over level v , jointly with indicator
function of the event of Yv ptq exceeding v before time Tβ . Introduce

kpv , t, γq :“ E
`

e´γ pYv pτpvqq´vq1tτpvq ď tu
˘

.

Later: evaluate double transform of kpv , t, γq, or, equivalently,

κpα, β, γq :“

ż 8

0
e´αv kpv ,Tβ , γq dv .

This, applying Laplace inversion, allows evaluation of

PpYv pτpvqq ´ v P dy , τpvq ď Tβq;

in the sequel denote this density by hpv , y , βq.
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Decomposition, ctd.
Definition of qpu, v , tq and q̄pu, v , tq, with v ă u, to be evaluated later.

q̄pu, v , tq: probability that starting in v , first a level above v is attained
(before t), and then v is reached again (before t), before u is exceeded
(also before t). Formally, q̄pu, v , tq :“ PpE pu, v , tq |Yv p0q “ vq, with

E pu, v , tq :“

$

&

%

s1 :“ infts ą 0 : Yv psq ą vu ď t,
s2 :“ infts ą s1 : Yv psq “ vu ď t,
@s P ps1, s2q : Yv psq ă u

,

.

-

.

qpu, v , tq: probability that starting in v , level u is exceeded (before t),
before v is reached from above (also before t). Formally,
qpu, v , tq :“ PpF pu, v , tq |Yv p0q “ 0q, with

F pu, v , tq :“

$

&

%

s1 :“ infts ą 0 : Yv psq ą vu ď t,
s2 :“ infts ě s1 : Yv psq ě uu ď t,
@s P rs1, s2s : Yv psq ą v

,

.

-

;

also includes case in which at first time v is exceeded, u is exceeded too.
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Decomposition, ctd.
Considering target probability ppu, v ,Tβq, there are three (disjoint) ways
to exceed u, starting with Yv p0q “ 0.

1. Level v can be exceeded (before Tβ) with overshoot that is larger
than u ´ v . This leads to contribution

p1pu, v ,Tβq :“

ż 8

u´v

hpv , y , βq dy .

2. Level v is exceeded with overshoot that lies between 0 and u ´ v ,
but from that point on u is exceeded before v is reached (and all
these events before Tβ). This corresponds to contribution

p2pu, v ,Tβq :“

ż u´v

0
hpv , y , βq δ`,y pu, v , βq dy ,

with δ`,y pu, v , βq :“ Ppτy puq ď mintσy pvq,Tβuq evaluated later.
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Decomposition, ctd.

3. Level v can be exceeded with overshoot that lies between 0 and
u ´ v , but from that point on v is reached before u is exceeded (and
all these events occur before Tβ). From that point on, geometric
number of attempts of exceeding u starting at level v ; in each of
these attempts, the process first has to exceed level v again, and
after that u should be exceeded before returning to v (all these
events occurring before Tβ). This leads to contribution

p3pu, v ,Tβq :“

ż u´v

0
hpv , y , βq δ´,y pu, v , βq dy ˆ

8
ÿ

k“0

qpu, v ,Tβq
`

q̄pu, v ,Tβq
˘k

“
qpu, v ,Tβq

1 ´ q̄pu, v ,Tβq

ż u´v

0
hpv , y , βq δ´,y pu, v , βq dy ,

with δ´,y pu, v , βq :“ Ppσy pvq ď mintτy puq,Tβuq evaluated later.
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Decomposition, ctd.
u

v

t

Yv ptq

u

v

t

Yv ptq

u

v

t

Yv ptq

Figure: Process Yv ptq. Top panel: Scenario 1, middle panel: Scenario 2,
bottom panel: Scenario 3 (black dots indicating start of new attempt to exceed
level u starting at level v).

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Decomposition, ctd.

Theorem
For any u ą 0, v P p0, uq, and β ą 0,

ppu, v ,Tβq “ p1pu, v ,Tβq ` p2pu, v ,Tβq ` p3pu, v ,Tβq.
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Computation of auxiliary objects

We conclude by evaluating all objects needed in decomposition of
Theorem:

˝ density hpy , v , βq (through the associated transform κpα, β, γq),
˝ probabilities δ´,y pu, v , βq and δ`,y pu, v , βq,
˝ probabilities qpu, v ,Tβq and q̄pu, v ,Tβq.
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Computation of auxiliary objects, ctd.

Evaluation of κpα, β, γq: as in Exercise 1.2.

With φ´pαq :“ r´α´ λ´p1 ´ b´pαqq, and ψ´pβq right inverse of φ´pαq:

κpα, β, γq “
λ´

φ´pαq ´ β

ˆ

b´pψ´pβqq ´ b´pγq

γ ´ ψ´pβq
´

b´pαq ´ b´pγq

γ ´ α

˙

.
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Computation of auxiliary objects, ctd.
Evaluation of δ´,y pu, v , βq and δ`,y pu, v , βq: use scale functions.

Using results that we derived,

δ´,y pu, v , βq “
W

pβq

` pu ´ yq

W
pβq

` pu ´ vq
,

with W
pβq

` puq such that, with φ`pαq :“ r`α ´ λ`p1 ´ b`pαqq,

ż 8

0
e´αuW

pβq

` puq du “
1

φ`pαq ´ β
.

Also,

δ`,y pu, v , βq “ Z
pβq

` pu ´ yq ´ Z
pβq

` pu ´ vq
W

pβq

` pu ´ yq

W
pβq

` pu ´ vq
.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Computation of auxiliary objects, ctd.

Evaluation of qpu, v ,Tβq and q̄pu, v ,Tβq: with δ´,y pu, v , βq and
δ`,y pu, v , βq as given above, it is seen that (Check!)

qpu, v ,Tβq “

ż u´v

0
hp0`, y ,Tβq δ`,y pu, v , βq dy `

ż 8

u´v

hp0`, y ,Tβq dy

and

q̄pu, v ,Tβq “

ż u´v

0
hp0`, y ,Tβq δ´,y pu, v , βq dy .

Density hp0`, y ,Tβq can be determined as pointed out earlier.
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CHAPTER VI: LEVEL-DEPENDENT DYNAMICS
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Level-dependent dynamics: main ideas

This chapter: behavior of net cumulative claim process depends on
current reserve level ‘in a continuous manner’.

We consider CL model, but now with claim arrival rate and premium rate
equal to λpxq and rpxq, respectively, when the surplus level is x .

Assume: rp0q “ 0 and rpxq ą 0 for all x ą 0.
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Level-dependent dynamics: main ideas, ctd.

Reserve level process obeys integral equation:

Xuptq “ u `

ż t

0
rpXupsqq ds ´

Nptq
ÿ

i“1

Bi ,

where claim arrival process Nptq is such that Poisson arrival rate at time
t is λpXuptqq.

More precisely, as ∆t Ó 0,

PpNpt ` ∆tq ´ Nptq “ 1 |Xupsq, s P r0, tsq “ λpXuptqq∆t ` op∆tq,

and

PpNpt ` ∆tq ´ Nptq “ 0 |Xupsq, s P r0, tsq “ 1 ´ λpXuptqq∆t ` op∆tq,

where probability of two or more arrivals in interval of length ∆t is op∆tq.
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Level-dependent dynamics: main ideas, ctd.

Objective: analysis of all-time ruin probability ppuq, i.e., probability of
Xuptq ever dropping below 0.

For general functions λpxq and rpxq evaluation of time-dependent ruin
probability ppu, tq is beyond reach, except in special cases.
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Level-dependent premium rate: duality

First assume λpxq ” λ.

Construct dual queueing process Qpsq, for s P r0, ts, as follows:
˝ Apply time reversal on the interval r0, ts. This concretely means

that the process’ jumps are now positive.
˝ Apply reflection at zero to prevent the process from attaining

negative values.
˝ Start the queue with a zero workload: Qp0q “ 0.

Workload dynamics are governed by

Qptq “

Nptq
ÿ

i“1

Bi ´

ż t

0
rpQpsqq ds.
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Level-dependent premium rate: duality

Claim: finite-time ruin probability ppu, tq equals probability of workload
level Qptq exceeding u (where Qp0q “ 0); analogously, all-time ruin
probability ppuq equals probability of stationary workload level Qp8q

exceeding u.

Let τpuq denote first time that reserve level Xuptq attains a non-positive
value, i.e., the ruin time.

Theorem
For any t ą 0, the events tτpuq ď tu and tQptq ą uu coincide. In
particular, the events tτpuq ă 8u and tQp8q ą uu coincide.
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Level-dependent premium rate: duality, ctd.

u “ u1

u “ u2

t

Xuptq

t

Qptq

Figure: Left panel: reserve level process Xuptq for initial surplus u1 (solid lines)
and for initial level u2 (dashed lines). Right panel: constructed workload
process Qptq, with time-reversed arrival process.
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Level-dependent premium rate: duality, ctd.

Proof. Relies on a sample-path comparison technique.

Let there be N claims in the reserve level process Xuptq between 0 and t
(which is Poisson distributed with parameter λt); call these times t1 up
to tN . Because of time reversal, jumps in dual queueing process Qptq
happen at times t‹

n :“ t ´ tN´n`1, for n “ 1, . . . ,N.

Claims B1, . . . ,BN in reserve level process Xuptq correspond to upward
jumps in the queueing process Qptq of size B‹

n “ BN´n`1.

Let deterministic function xupsq solve x 1
upsq “ rpxupsqq under xup0q “ u.

Evidently, there is monotonicity as function of initial surplus level: if
u1 ă u2, then xu1psq ă xu2psq.

Proof of equivalence of tτpuq ď tu and tQptq ą uu: two inclusions.
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Level-dependent premium rate: duality, ctd.
˝ First consider scenario that Qptq ą u, corresponding to path of
Xu1ptq (i.e., solid graph in left panel). Due to monotonicity,

Qpt‹
N´q “ xQptqpt1q ´ B1 ą xupt1q ´ B1 “ Xupt1q.

If Qpt‹
N´q “ 0, then Xupt1q ă 0, so that indeed τpuq ď t. If

Qpt‹
N´q ą 0, iterate above argument to conclude that

Qpt‹
N´1q ą Xupt2q:

Qpt‹
N´1´q “ xQpt‹

N´qpt2 ´ t1q ´ B2

ą xXupt1qpt2 ´ t1q ´ B2 “ Xupt2q.

Again distinguish Qpt‹
N´1´q “ 0 and Qpt‹

N´1´q ą 0. Former case:
Xupt2q ă 0 and hence τpuq ď t.
Continuing along these lines, due to Qpt‹

1 ´q “ 0, this procedure will
eventually yield t‹

j such that Qpt‹
j ´q “ 0. Hence, for this j we have

that XuptN´j`1q ă 0, so that τpuq ď t, as desired.
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Level-dependent premium rate: duality, ctd.

˝ Conversely, now suppose that Qptq ď u, corresponding to path of
Xu2ptq (i.e., dashed graph in left panel). Then, using monotonicity
once more,

Qpt‹
N´q “ xQptqpt1q ´ B1 ď xupt1q ´ B1 “ Xupt1q.

This relation can be iterated in same way as before, to obtain
Qpt‹

j ´q ď XuptN´j`1q, for all j P t1, . . . ,Nu.

Together with Qpsq ě 0, this implies that at all claim arrivals reserve
level process is non-negative. As ruin can only occur at claim
arrivals, this means that no ruin occurs in r0, tq, i.e., that τpuq ą t.
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Level-dependent premium rate: distribution

Justified by duality, describe distribution of stationary workload Qp8q.
f pyq: density of stationary workload. Observe: equals ´p1pyq by virtue of
duality. F p0q: probability that stationary workload is 0.

Theorem
For y ą 0,

rpyqf pyq “ λ

ż y

0`

PpB ą y ´ zqf pzq dz ` λF p0qPpB ą yq.

Proof. Left-hand side can be interpreted as probability flux through the
level y from above, and right-hand side as probability flux through y
from below.
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Level-dependent premium rate: distribution, ctd.

Next challenge: compute density f pyq from integral equation (Volterra
integral equation of second kind). We restrict ourselves to case F p0q ą 0.

Introduce gpyq :“ λPpB ą yq for y ě 0 and kernel
K py , zq :“ gpy ´ zq{rpyq for 0 ď z ă y ă 8. We obtain alternative
representation

f pyq “ K py , 0qF p0q `

ż y

0`

K py , zqf pzq dz .

Define the kernels Knpx , yq iteratively by K1px , yq :“ K px , yq and

Knpx , yq :“

ż x

y

Kn´1px , zqK pz , yq dz

for 0 ď y ă x ă 8 and n P t2, 3, . . .u.
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Level-dependent premium rate: distribution, ctd.

Solve iteratively:

f pyq “ K py , 0qF p0q `

ż y

0`

K py , zq

ˆ

K pz , 0qF p0q `

ż z

0`

K pz ,wqf pwq dw

˙

dz

“ ¨ ¨ ¨ “ F p0q

8
ÿ

n“1

Knpy , 0q.
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Level-dependent premium rate: distribution, ctd.
Convergence of sum follows from following Lemma, implying that
K ‹px , yq :“

ř8

n“1 Knpx , yq is well-defined.

First introduce, for 0 ď y ă x ă 8,

Rpx , yq :“

ż x

y

1
rpwq

dw .

Represents time to go from level x to level y ă x in absence of arrivals.

Lemma
For 0 ď y ă x ă 8 and n P t1, 2, . . .u,

Knpx , yq ď
λnRpx , yqn´1

rpxqpn ´ 1q!
.
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Level-dependent premium rate: distribution, ctd.

Proof. By induction. For n “ 1 stated follows from gpx ´ yq ď λ: we
thus have that K px , yq ď λ{rpxq.
Now suppose claim holds for n ´ 1. Then, using induction hypothesis,

Knpx , yq “

ż x

y

Kn´1px , zqK pz , yq dz ď

ż x

y

λn´1Rpx , zqn´2

rpxqpn ´ 2q!

λ

rpzq
dz .

Observing that
d

dz
Rpx , zq “ ´

1
rpzq

,

we have that RHS equals
„

´
λnRpx , zqn´1

rpxqpn ´ 1q!

ȷx

z“y

“
λnRpx , yqn´1

rpxqpn ´ 1q!
,

as desired.
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Level-dependent premium rate: distribution, ctd.
We find stationary workload density (equals minus derivative of ruin
probability in associated ruin model, as pointed out earlier).

It uses

ξ :“ 1 `

ż 8

0`

K ‹py , 0q dy .

Theorem
If ξ ă 8, then F p0q “ 1{ξ and, for y ą 0,

f pyq “
K ‹py , 0q

ξ
.

Case of exponentially distributed claims can be done explicitly; see last
part of Section 6.2.
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Level-dependent premium rate and claim arrival rate
Now: premium rate and claim arrival rate are level-dependent. Goal:
integro-differential equation for survival probability p̄puq “ 1 ´ ppuq.

In this context duality does not apply (see Remark 6.2). Therefore:
Kolmogorov forward equation method, i.e., Method 4 of Section 1.6.

Looking ahead an infinitesimal amount of time ∆t,

p̄puq “ p1´λpuq∆tq p̄pu`rpuq∆tq`λpuq∆t

ż u´

0
p̄pu´zqPpB P dzq`op∆tq.

Bring p̄pu ` rpuq∆tq to LHS and divide by ∆t. After ∆t Ó 0,

rpuqp̄1puq “ λpuq p̄puq ´ λpuq

ż u´

0
p̄pu ´ zqPpB P dzq

“ λpuq p̄puq ` λpuq

ż u´

0
p̄pu ´ zq dPpB ą zq.

Then apply integration by parts.
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Level-dependent premium rate: distribution, ctd.

Write f puq :“ p̄1puq.

Theorem
For u ą 0,

rpuq f puq “ λpuq

ż u

0`

PpB ą u ´ zq f pzq dz ` λpuq p̄p0qPpB ą uq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Level-dependent premium rate: distribution, ctd.

Introduce ζpuq :“ λrpuq{λpuq.

Equality in Theorem becomes

ζpuq f puq “ λ

ż u

0
PpB ą u ´ zq f pzq dz ` λ p̄p0qPpB ą uq.

Has exact same structure as equality for λpxq ” λ. Hence can again be
solved by same type of iteration.
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Specific level-dependent model

Variant of CL model, where high surplus leads to increase of claim arrival
rate.

Model:
˝ Let A1,A2, . . . be a sequence of i.i.d. exp(λ) rv s.
˝ When surplus level right after i-th claim arrival is y , then next

inter-claim time equals maxt0,Ai ´ cyu, where c is positive constant.
Mechanism is such that when surplus level is large, there is a cascade of
claims, so that reserve level is pulled down, whereas if surplus level is
small, the model effectively behaves as conventional CL model.

Suggests that ppuq “ 1, as surplus process cannot drift to 8.
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Specific level-dependent model
As before: objective is to evaluate ruin probability over exponentially
distributed horizon, i.e., ppu,Tβq, through its Laplace transform:

πpα, βq :“

ż 8

0
e´αuppu,Tβq du.

Main idea: by conditioning on first claim arrival, we can express πpα, βq

in itself, but evaluated in different arguments.

Two scenarios are relevant:
˝ If exponentially distributed random variable with parameter λ, say A,

is smaller than cu, then next claim arrives instantly. This could lead
to instantaneous ruin if its size is larger than u, and alternatively can
bring the surplus process down to level between 0 and u.

˝ A can be larger than cu. Then claim arrives after A ´ cu time units.
Again, this can lead to either immediate ruin, or to surplus level
between 0 and u (if time horizon Tβ has not been exceeded).

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Specific level-dependent model, ctd.

Reasoning of the preceding slide entails

ppu,Tβq “ p1pu,Tβq ` p2pu,Tβq.

Here p1pu,Tβq corresponds to first scenario, i.e.,

p1pu,Tβq “ p1 ´ e´λcuq

´

ż u

0
ppu ´ v ,TβqPpB P dvq `

ż 8

u

PpB P dvq

¯

,

and p2pu,Tβq to second scenario, i.e.,

p2pu,Tβq “

ż 8

cu

λe´λs PpTβ ě s ´ cuq

´

ż u`rps´cuq

0
ppu ` rps ´ cuq ´ v ,TβqPpB P dvq `

ż 8

u`rps´cuq

PpB P dvq

¯

ds.
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Specific level-dependent model, ctd.
πi pα, βq: Laplace transform of pi p¨ ,Tβq, for i “ 1, 2.

Focusing on π1pα, βq, the integral
ż 8

0
e´αup1 ´ e´λcuq

ż u

0
ppu ´ v ,TβqPpB P dvq du,

after swapping the order of integrals and recognizing Laplace transform
of a convolution, equals

bpαqπpα, βq ´ bpα ` λcqπpα ` λc , βq.

Along similar lines,
ż 8

0
e´αup1 ´ e´λcuq

ż 8

u

PpB P dvq du “
1 ´ bpαq

α
´

1 ´ bpα ` λcq

α ` λc
.

Conclude: π1pα, βq is sum of these expressions.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Specific level-dependent model, ctd.

Now consider evaluation of π2pα, βq. We are to calculate two triple
integrals, using standard techniques.

First integral equals:

λ

r

ˆ

bppλ` βq{rqπppλ` βq{r , βq ´ bpα ` λcqπpα ` λc , βq

α ` λc ´ pλ` βq{r

˙

.

Second integral equals

λ

λ` β

ˆ

1 ´ bpα ` λcq

α ` λc
´

bppλ` βq{rq ´ bpα ` λcq

α ` λc ´ pλ` βq{r

˙

.

Conclude: π2pα, βq is sum of these expressions.
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Specific level-dependent model, ctd.

We found, for easily determined functions F pα, βq, G pα, βq and Hpα, βq,
a relation of the form

πpα, βq “ F pα, βqπpα ` λc , βq ` G pα, βq ` Hpα, βqπppλ` βq{r , βq.

One can subsequently express πpα ` λc , βq in terms of πpα ` 2λc , βq,
etc. Repeatedly iterating this relation, we obtain an expression for
πpα, βq.
In this expression κprq :“ πppλ` βq{r , βq (with β kept fixed) appears.
Expression for κprq is derived by inserting α “ αprq :“ pλ` βq{r , and
solving the resulting linear equation in κprq.
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Specific level-dependent model, ctd.
After some algebra (Exercise 6.4), we find following result. We denote
αj :“ α ` jλc and αjprq :“ αprq ` jλc .

Theorem
For any α ě 0 and β ą 0,

πpα, βq “ G pα, βq ` Hpα, βqκprq

`

8
ÿ

j“1

`

G pαj , βq ` Hpαj , βqκprq
˘

j´1
ź

i“0

F pαi , βq,

where, defining the empty product as 1,

κprq “

ř8

j“0 G pαjprq, βq
śj´1

i“0 F pαi prq, βq

1 ´
ř8

j“0 Hpαjprq, βq
śj´1

i“0 F pαi prq, βq
.
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CHAPTER VII: MULTIVARIATE RUIN
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Multivariate ruin: main ideas

Most of existing ruin theory: primary focus is on univariate setting
featuring single reserve process. In practice, however, position of
insurance firm is often described by multiple, typically correlated, reserve
processes.

Multivariate ruin is hard — can be dealt with explicitly only under
additional assumptions.

Concretely, ordering between individual net cumulative claim processes,
say Y ptq ” pY1ptq, . . . ,Ydptqq for some d P N, needs to be imposed.

This chapter: analysis of multivariate ruin under ordering condition. In
addition, we derive so-called multivariate Gerber-Shiu metrics (including
ruin times, undershoots, and overshoots).

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Bivariate case: model
Consider two net cumulative claim processes, say Y1ptq and Y2ptq, in
which claims arrive simultaneously, according to Poisson process with
rate λ.

These claims B1,B2, . . . are 2-dimensional, componentwise non-negative
i.i.d. random vectors, distributed as generic random vector B. Their
entries are ordered:

P
`

Bp1q ě Bp2q
˘

“ 1,

where Bpiq is generic claim size corresponding to Yi ptq.

The premium rate is r for both individual net cumulative claim processes.

Bivariate Laplace exponent is therefore given by

φpαq :“ logE e´αJY p1q “ r 1Jα ´ λp1 ´ bpαqq,

with bpαq bivariate LST corresponding to random vector B.
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Bivariate case: model, ctd.

t

Y1ptq

t

Y2ptq

Figure: Net cumulative claim processes Y1ptq and Y2ptq. Observe that
processes are ordered; all jumps in Y1ptq correspond to simultaneous jumps of
at most that size (possibly zero) in Y2ptq.
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Bivariate case: model, ctd.

We assumed per-component claim size distributions to be ordered almost
surely, whereas premium rates of components are assumed to coincide.
We can, however, generalize this (Remark 7.1).

As it turns out, we can work with distinct premium rates r1 and r2, but
then we have to impose

P
`

Bp1q{r1 ě Bp2q{r2
˘

“ 1.

(Check!)
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Bivariate case: key objects

Approach relies on Method 4, discussed in Section 1.6:
we set up Kolmogorov forward equations for bivariate queueing process
Qptq (with Qp0q “ 0) that is dual of Y ptq.

Define
τi puq :“ inftt ě 0 : Yi ptq ě uu,

for i “ 1, 2.
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Bivariate case: key objects, ctd.
Following lemma shows that ruin in the bivariate risk model (with initial
capitals u1 and u2) can be expressed in terms of exceedance probabilities
(over levels u1 and u2) in bivariate dual queueing model.
It justifies that in the sequel we focus on queueing model only.

Lemma
For any t ą 0,

˝ the events tτ1pu1q ď t, τ2pu2q ď tu and tQ1ptq ą u1,Q2ptq ą u2u

coincide.
˝ the events tτ1pu1q ą t, τ2pu2q ą tu and tQ1ptq ď u1,Q2ptq ď u2u

coincide.
˝ the events tτ1pu1q ď t, τ2pu2q ą tu and tQ1ptq ą u1,Q2ptq ď u2u

coincide.
˝ the events tτ1pu1q ą t, τ2pu2q ď tu and tQ1ptq ď u1,Q2ptq ą u2u

coincide.
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Bivariate case: key objects, ctd.

Proof. First observe that, based on Theorem 6.1, events tτi puq ď tu and
tQi ptq ą uu coincide, for i “ 1, 2. This directly implies first and second
claim. Third claim follows from

tτ1pu1q ď t, τ2pu2q ą tu “ tτ1pu1q ď tuztτ1pu1q ď t, τ2pu2q ď tu,

in combination with first claim and fact that events tτ1puq ď tu and
tQ1ptq ą uu coincide. Fourth claim follows by symmetry.
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Bivariate case: key objects, ctd.

Our objective is to characterize

κtpαq :“ E e´αJQptq.

We settle for this object evaluated at exponentially distributed time Tβ ,
for some killing rate β.

Observe: both individual queues are of M/G/1 type, and can therefore be
analyzed relying on techniques explained in Chapter 1, but challenge lies
in revealing joint workload distribution.
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Bivariate case: key objects, ctd.
Queueing dynamics in interior of positive quadrant differ from those at
boundaries. We therefore also introduce

κ̄tpαq :“ E e´αJQptq1tQptq ą 0u;

the (strict) inequality Qptq ą 0 is to be understood componentwise.

Immediate: Q1ptq ě Q2ptq almost surely. Hence,

κ̄
p1q
t pα1q :“ E e´αJQptq1tQ1ptq ą 0,Q2ptq “ 0u

“ E e´α1Q1ptq1tQ1ptq ą 0,Q2ptq “ 0u

and

qt :“ E e´αJQptq1tQ1ptq “ Q2ptq “ 0u

“ PpQ1ptq “ Q2ptq “ 0q “ PpQ1ptq “ 0q.

Section 1.6: with ψ1pβq right-inverse of φpα1, 0q, for β ą 0,

qTβ
“

β

rψ1pβq
.
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Bivariate case: key objects, ctd.
Above transforms translate into transforms related to ruin probabilities,
as follows. Define bivariate time-dependent ruin probability:

ppu, tq :“ Ppτ1pu1q ď t, τ2pu2q ď tq,

and pi pu, tq is time-dependent ruin probability of firm i , for i “ 1, 2. Also

πpα, βq :“

ż 8

0

ż 8

0
e´αJuppu,Tβq du1 du2,

πi pα, βq :“

ż 8

0
e´αupi pu,Tβq du.

As in Remark 1.2,

κTβ
pαq “ 1 ´ α1 π1pα1, βq ´ α2 π2pα2, βq ` α1α2 πpα, βq.

Chapter 1: expressions for πi pα, βq for i “ 1, 2. Hence: it suffices to find
κTβ

pαq to also find πpα, βq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Bivariate case: Kolomogorov equations
As in Section 1.6, up to op∆tq-terms,

κ̄t`∆tpαq ` κ̄
p1q

t`∆tpα1q ` qt`∆t “ κt`∆tpαq

“ κ̄tpαq
`

1 ´ λ∆t ` λ∆t bpαq ` r 1Jα∆t
˘

`

κ̄
p1q
t pα1q

`

1 ´ λ∆t ` λ∆t bpαq ` rα1∆t
˘

`

qt
`

1 ´ λ∆t ` λ∆t bpαq
˘

.

Recalling definition of φpαq, we obtain following differential equation:

Lemma
For any α ě 0 and t ą 0,

B

Bt
κ̄tpαq `

B

Bt
κ̄

p1q
t pα1q `

B

Bt
qt

“ φpαq κ̄tpαq `
`

φpαq ´ rα2
˘

κ̄
p1q
t pα1q `

`

φpαq ´ r1Jα
˘

qt .
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Bivariate case: derivation of transform.

Next step: transforms at exponentially distributed time Tβ .
Multiply full differential equation by density βe´βt , and integrate over
t ě 0. By Equation (1.7), and realizing that

κ̄0pαq “ κ̄
p1q

0 pα1q “ 0,

we find

β
´

κ̄Tβ
pαq ` κ̄

p1q

Tβ
pα1q ` qTβ

´ 1
¯

“ φpαq κ̄Tβ
pαq `

`

φpαq ´ rα2
˘

κ̄
p1q

Tβ
pα1q `

`

φpαq ´ r1Jα
˘

qTβ
.
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Bivariate case: derivation of transform, ctd.

After rearranging:

κ̄Tβ
pαq “ ´

`

φpαq ´ rα2 ´ β
˘

κ̄
p1q

Tβ
pα1q `

`

φpαq ´ r1Jα ´ β
˘

qTβ
` β

φpαq ´ β
,

so that we end up with

κTβ
pαq “

rα2 κ̄
p1q

Tβ
pα1q ` r1Jα qTβ

´ β

φpαq ´ β
.

We lack, however, expression for

κ̄
p1q

Tβ
pα1q “ E e´α1Q1pTβq1tQ1pTβq ą 0,Q2pTβq “ 0u.
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Bivariate case: derivation of transform, ctd.

Strategy: any zero of denominator (with positive real part) is necessarily
also a zero of the numerator. Rewrite φpαq ´ β “ 0 as

λbpαq “ cpαq :“ λ´ r1Jα ` β.

Fixing α1 with Re α1 ą 0 and β, due to lemma below we can identify
unique α2 “ ω2pα1, βq such that φpαq ´ β “ 0 while κTβ

pαq should be
finite. Proof relies on Rouché’s theorem.

Lemma
For every α1 with Re α1 ą 0 and β ą 0, there exists a unique
α2 “ ω2pα1, βq with Re ω2pα1, βq ą Re p´α1q that satisfies
λbpαq “ cpαq. For any β ą 0, the function α1 ÞÑ ω2pα1, βq is analytic
in Re α1 ą 0.
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Bivariate case: derivation of transform, ctd.
By Lemma, we obtain by equating numerator to 0:

rω2pα1, βq κ̄
p1q

Tβ
pα1q `

`

α1 ` ω2pα1, βq
˘ β

ψ1pβq
´ β “ 0

(recalling expression for qTβ
). Equivalently,

κ̄
p1q

Tβ
pα1q “

β

rω2pα1, βq
´

ˆ

α1

rω2pα1, βq
`

1
r

˙

β

ψ1pβq
.

This can now be inserted into κTβ
pαq:

κTβ
pαq “

1
φpαq ´ β

˜

βα2

ω2pα1, βq
´

ˆ

α1α2

ω2pα1, βq
` α2

˙

β

ψ1pβq
`

pα1 ` α2qβ

ψ1pβq
´ β

¸

.
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Bivariate case: derivation of transform, ctd.

After some rearranging:

Theorem
For any α ě 0 and β ą 0,

κTβ
pαq “

α1 ´ ψ1pβq

φpαq ´ β

β

ψ1pβq

ω2pα1, βq ´ α2

ω2pα1, βq
.

Check: α “ 0 yields 1, as desired.
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Higher dimensional case

Next goal: recursively solve the case of d P t3, 4, . . .u net cumulative
claim processes:

˝ Claims arrive simultaneously in all d dimensions, according to
Poisson process with rate λ.

˝ Claims B1,B2, . . . are d-dimensional, componentwise non-negative
i.i.d. random vectors, distributed as generic random vector B.
Following almost-sure ordering applies:

P
`

Bp1q ě Bp2q ě ¨ ¨ ¨ ě Bpdq
˘

“ 1.

˝ Premium rate is, for all net cumulative claim processes, equal to r .
Define φpαq as before, with bpαq the d-dimensional LST of B.
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Higher dimensional case

Objective: find transform of random vector Qptq, with Qp0q “ 0:

κtpαq :“ E e´αJQptq,

evaluated at exponentially distributed time Tβ .

Central objects: with xris :“ px1, . . . , xi q for i P t1, . . . , du,

κ̄
piq
t pαrisq :“ E e´αJQptq1tQrisptq ą 0,Qi`1ptq “ . . . “ Qdptq “ 0u

“ E e´αJ
risQrisptq1tQrisptq ą 0,Qi`1ptq “ . . . “ Qdptq “ 0u

“ E e´αJ
risQrisptq1tQrisptq ą 0,Qi`1ptq “ 0u,

where last equality is due to ordering Q1ptq ě . . . ě Qdptq.
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Higher dimensional case, ctd.

From bivariate case, we know

κ̄
p1q

Tβ
pαr1sq “ E e´αJ

r1sQr1spTβq1tQr1spTβq ą 0,Q2pTβq “ 0u

“ E e´α1Q1pTβq1tQ1pTβq ą 0,Q2pTβq “ 0u.

In addition, in Chapter 1 we found

κ̄
p0q

Tβ
pαr0sq “ qTβ

:“ PpQ1pTβq “ ¨ ¨ ¨ “ QdpTβq “ 0q “ PpQ1pTβq “ 0q.
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Higher dimensional case, ctd.

Following same procedure as in bivariate case, with each all-ones vector 1
used in the following expression having appropriate dimension,

κTβ
pαq “

r
řd´1

i“0

`

1Jα ´ 1Jαris

˘

κ̄
piq
Tβ

pαrisq ´ β

φpαq ´ β
.

Idea: recursively identify the unknown functions in numerator: supposing
that expressions for

κ̄
p0q

Tβ
pαr0sq, κ̄

p1q

Tβ
pαr1sq, . . . , κ̄

pd´2q

Tβ
pαrd´2sq

are available, we point out how to determine κ̄pd´1q

Tβ
pαrd´1sq.
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Higher dimensional case, ctd.

Fixing αrd´1s and β, using same argumentation as before, we can find a
unique αd (in a certain region) such that φpαq ´ β “ 0; denote this by
ωdpαrd´1s, βq.

Any such root of denominator should be root of numerator as well. By
some algebra recursive relation

κ̄
pd´1q

Tβ
pαrd´1sq “

β

rωdpαrd´1s, βq
´

d´2
ÿ

i“0

˜

1Jαrd´1s ´ 1Jαris

ωdpαrd´1s, βq
` 1

¸

κ̄
piq
Tβ

pαrisq

follows.
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Higher dimensional case, ctd.

By some additional calculus following result is derived. Here
ωjpαrj´1s, βq is solution for αj in equation φpαrjs, 0q ´ β “ 0 (with
vector 0 being of dimension d ´ j), for given values of αrj´1s and β.

Theorem
For any α ě 0 and β ą 0,

κTβ
pαq “

α1 ´ ψ1pβq

φpαq ´ β

β

ψ1pβq

d
ź

j“2

ωjpαrj´1s, βq ´ αj

ωjpαrj´1s, βq
.
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Higher dimensional case, ctd.

There is alternative way to identify transform; see last part of Section 7.3.

Also yields explicit expression for κ̄piq
Tβ

pαrisq. With

Ξi pα, βq :“ ´
α1 ´ ψ1pβq

rωi`1pαris, βq

β

ψ1pβq

i
ź

j“2

ωjpαrj´1s, βq ´ αj

ωjpαrj´1s, βq
,

we find:

Corollary
For any αris ě 0 and β ą 0,

κ̄
piq
Tβ

pαrisq “ Ξi pα, βq ´ Ξi´1pα, βq.
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Tandem system

Model: tandem queueing network fed by a compound Poisson process
Y ptq with arrival rate λ ą 0. The i.i.d. service requirements B1,B2, . . .
are distributed as rv B with LST bpαq.
Consider d queues in series, with (constant) service rates c1, . . . , cd that
are non-increasing (i.e., c1 ě c2 ě ¨ ¨ ¨ ě cd).
Output of i-th queue is continuously fed into pi ` 1q-st queue, for
i “ 1, . . . , d ´ 1; no external input arrives.

Framework is seemingly different from the one discussed earlier, but joint
workload distribution immediately follows from earlier results.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Tandem system, ctd.
Idea: above tandem network fits into our setup, as follows.
Qi ptq: workload in the i-th queue, with i “ 1, . . . , d , at time t ě 0;
assume system starts empty at time 0. Recall that workload in first
queue obeys

Q1ptq “ pY ptq ´ c1tq ´ inf
sPr0,ts

pY psq ´ c1sq.

Now consider Q1ptq ` Q2ptq, which is only affected by service rate c2
(not by c1). This means that

Q1ptq ` Q2ptq “ pY ptq ´ c2tq ´ inf
sPr0,ts

pY psq ´ c2sq.

Extending this argument, we obtain for any i “ 1, . . . , d ,

Qpiqptq :“
i

ÿ

j“1

Qjptq “ pY ptq ´ ci tq ´ inf
sPr0,ts

pY psq ´ ci sq.
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Tandem system, ctd.

t

Q1ptq

t

Q2ptq

t

Qp2qptq

Figure: Tandem queueing processes Q1ptq and Q2ptq, and sum Qp2q
ptq. Q1ptq

is M/G/1 queue with drain rate c1 and Qp2q
ptq is M/G/1 queue with drain rate

c2. While not empty, Q2ptq increases at rate c1 ´ c2 and decreases at rate c2.
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Tandem system, ctd.

Observe Qpiqptq{ci can be seen as workload in queue fed by compound
Poisson process with arrival rate λ and i.i.d. service requirements
distributed as B{ci , emptied at a unit rate. But because

P
`

B{cd ě B{cd´1 ě ¨ ¨ ¨ ě B{c1
˘

“ 1,

we can apply earlier results to describe joint distribution of these d
workloads (with indices 1, . . . , d being swapped), and hence also of
original d workloads Q1ptq, . . . ,Qdptq. See Theorem 7.3.
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Gerber-Shiu metrics

So far: focus on joint ruin probability. Now: joint distribution of ruin
times of both insurance firms, together with corresponding undershoots
and overshoots, i.e., so-called (multivariate) Gerber-Shiu metrics.

Here we do bivariate case, but can be extended to higher dimensions.

Abbreviate u “ pu1, u2qJ P r0,8q2, Y ptq “ pY1ptq,Y2ptqqJ,
τ puq “ pτ1pu1q, τ2pu2qqJ, and

Y pτ puq´q :“

ˆ

Y1pτ1pu1q´q

Y2pτ2pu2q´q

˙

, Y pτ puqq :“

ˆ

Y1pτ1pu1qq

Y2pτ2pu2qq

˙

;

here τi pui q is ruin time corresponding to net cumulative claim process
Yi ptq, i.e., smallest t ě 0 such that Yi ptq ě ui .
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Gerber-Shiu metrics, ctd.
Object of study, for u ě 0 and γ1,γ2 ě 0, γ3 ď 0,

ppuq ” ppu, β,γ1,γ2,γ3q

:“ E
`

e´γJ
1 τ puq´γJ

2 pu´Y pτ puq´qq´γJ
3 pu´Y pτ puqqq1tτ puq ď Tβ 1u

˘

,

where γi “ pγi1, γi2qJ for i “ 1, 2, 3.

We analyze ppuq through (nine-fold) transform, where α ě 0 and β ą 0,

πpαq ” πpα, β,γ1,γ2,γ3q :“

ż 8

0

ż 8

0
e´αJu ppu, β,γ1,γ2,γ3q du1 du2.

Define univariate counterparts of ppuq:

pi puq ” ppu, β, γ1i , γ2i , γ3i q

:“ E
`

e´γ1iτi puq´γ2i pu´Yi pτi puq´qq´γ3i pu´Yi pτi puqqq1tτi puq ď Tβu
˘

.
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Gerber-Shiu metrics, ctd.

Equation our analysis is based on, as ∆t Ó 0, cf. Exercise 1.2:

ppuq “ e´γ1
J1∆t

´

λ∆t

ż u1

v1“0

ż u2

v2“0
ppu ´ vqPpB P dvq `

λ∆t

ż u1

v1“0

ż 8

v2“u2

p1pu1 ´ v1q e´γ22u2´γ32pu2´v2q PpB P dvq `

λ∆t

ż 8

v1“u1

ż u2

v2“0
p2pu2 ´ v2q e´γ21u1´γ31pu1´v1q PpB P dvq `

λ∆t

ż 8

v1“u1

ż 8

v2“u2

e´γJ
2 u´γJ

3 pu´vq PpB P dvq `

`

1 ´ pλ` βq∆t
˘

ppu ` r 1∆tq
¯

` op∆tq.
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Gerber-Shiu metrics, ctd.

Standard procedure: subtract ppu ` r 1∆tq from both sides, divide by
∆t, and let ∆t Ó 0:

´r
´

B

Bu1
ppuq `

B

Bu2
ppuq

¯

“ λ

ż u1

0

ż u2

0
ppu ´ vqPpB P dvq `

λ

ż u1

0

ż 8

u2

p1pu1 ´ v1q e´γ22u2´γ32pu2´v2q PpB P dvq `

λ

ż 8

u1

ż u2

0
p2pu2 ´ v2q e´γ21u1´γ31pu1´v1q PpB P dvq `

λ

ż 8

u1

ż 8

u2

e´γJ
2 u´γJ

3 pu´vq PpB P dvq ´
`

1Jγ1 ` λ` β
˘

ppuq.
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Gerber-Shiu metrics, ctd.
Compute transform with respect to u: multiply full equation by e´αJu

and integrate over non-negative u1 and u2. RHS becomes:
`

λbpαq ´ 1Jγ1 ´ λ´ β
˘

πpαq ` λζpαq,

where

ζpαq :“ π1pα1q
bpα1,´γ32q ´ bpα1, α2 ` γ22q

α2 ` γ22 ` γ32
`

π2pα2q
bp´γ31, α2q ´ bpα1 ` γ21, α2q

α1 ` γ21 ` γ31
`

bp´γ31,´γ32q´bp´γ31, α2 ` γ22q´bpα1 ` γ21,´γ32q`bpα1 ` γ21, α2 ` γ22q

pα1 ` γ21 ` γ31qpα2 ` γ22 ` γ32q
.

LHS becomes:

´r 1Jαπpαq ` rπ˝
1pα2q ` rπ˝

2pα1q,

where

π˝
1pαq :“

ż 8

0
pp0, uq e´αu du, π˝

2pαq :“

ż 8

0
ppu, 0q e´αu du.
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Gerber-Shiu metrics, ctd.

Proposition
For any α ě 0, β ą 0, γ1,γ2 ě 0, γ3 ď 0,

πpαq “
rpπ˝

1pα2q ` π˝
2pα1qq ´ λζpαq

φpαq ´ 1Jγ1 ´ β
.

Left: identification of functions π˝
i pαq. Key idea: ordering Y1ptq ě Y2ptq

can be used to evaluate π˝
1pαq, where crucial role is played by

τ1p0q ď τ2puq for all u ě 0. Then, by Lemma:

π˝
2pαq “ ´π˝

1
`

ω2pα, 1Jγ1 ` βq
˘

`
λ

r
ζ

`

α, ω2pα, 1Jγ1 ` βq
˘

.
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Gerber-Shiu metrics, ctd.
Define

W puq :“ pY2pτ1puqq,B˝
2 puqqJ;

B˝
2 puq is claim size in Y2ptq at ruin time τ1puq corresponding to Y1ptq.

We need, with Ipu, dwq :“ 1tτ1puq ď Tβ ,W puq P dwu,

p̄1pu, dwq :“ E
`

e´1Jγ1τ1puq´γ21pu´Y1pτ1puq´qq´γ31pu´Y1pτ1puqqqIpu, dwq
˘

.

Key identity (use that τ1p0q ď τ2puq for all u ě 0!):

pp0, uq “

ż 8

w1“u

ż 8

w2“0
p̄1p0, dwq e´γ22pu´w1`w2q´γ32pu´w1q `

ż u

w1“´8

ż 8

w2“0
p̄1p0, dwq p2pu ´ w1q.

First scenario: Y2ptq first exceeds u at τ1p0q (i.e., τ1p0q “ τ2puq).
Second scenario: u is not yet exceeded by Y2ptq at time τ1p0q (i.e.,
τ1p0q ă τ2puq). See book for further explanation.
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Gerber-Shiu metrics, ctd.

t

Y1ptq

t

Y1ptq

t

Y2ptq

u

t

Y2ptq

u

Figure: Processes Y1ptq and Y2ptq such that Y1ptq ě Y2ptq for all t ě 0. Left
panels: scenario of pY1ptq,Y2ptqq in which τ1p0q “ τ2puq. Right panels:
scenario of pY1ptq,Y2ptqq in which τ1p0q ă τ2puq.
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Gerber-Shiu metrics, ctd.

Define, for δ P R2,

ξpδq :“ E
`

e´1Jγ1τ1p0q`γ21Y1pτ1p0q´q`γ31Y1pτp0qq´δ1Y2pτ1p0qq´δ2B
˝
2 p0q1tτ1p0q ď Tβu

˘

.

Then,

π˝
1pαq “

ż 8

0
e´αu

ż 8

w1“u

ż 8

w2“0
p̄1p0, dwq e´γ22pu´w1`w2q´γ32pu´w1q du `

ż 8

0
e´αu

ż u

w1“´8

ż 8

w2“0
p̄1p0, dwq p2pu ´ w1q du

“
ξp´γ22 ´ γ32, γ22q ´ ξpα, γ22q

α ` γ22 ` γ32
` ξpα, 0qπ2pαq;

second equality follows by swapping the order of the integrals and
standard calculus.
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Gerber-Shiu metrics, ctd.

To evaluate this expression, we study

p̌1puq ” p̌1pu, δq

:“ E
`

e´1Jγ1τ1puq´γ21pu´Y1pτ1puq´qq´γ31pu´Y1pτpuqqq´δJW puq1tτ1puq ď Tβu
˘

.

Due to ξpδq “ p̌1p0, δq, if we have access to p̌1p0, δq, then by inserting
specific values for δ1 and δ2, we can compute all terms.
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Gerber-Shiu metrics, ctd.
As in Exercise 1.2, determine transform of p̌1puq. First,

p̌1puq “e´1Jγ1 ∆t`rδ1 ∆t
´

λ∆t

ż u

v1“0

ż 8

v2“0
PpB P dvq p̌1pu ´ v1q e´δ1v2 `

λ∆t

ż 8

v1“u

ż 8

v2“0
PpB P dvq e´γ21u e´γ31pu´v1q e´1Jδ v2 `

p1 ´ λ∆t ´ β∆tq p̌1pu ` r ∆tq
¯

.

Subtract p̌1pu ` r ∆tq from both sides, divide by ∆t, and let ∆t Ó 0, so
as to obtain integro-differential equation. Taking transforms,

π̌1pαq “
1

φpα, δ1q ´ 1Jγ1 ´ β

ˆ

r p̌1p0q ´ λ
bp´γ31, 1Jδq ´ bpα ` γ21, 1Jδq

α ` γ21 ` γ31

˙

,

with

π̌1pαq :“

ż 8

0
e´αu p̌1puq du.
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Gerber-Shiu metrics, ctd.

Next step: determine p̌1p0q. Any value of α (with non-negative real part,
that is) for which φpα, δ1q ´ 1Jγ1 ´ β equals zero, term between
brackets in π̌1pαq should equal zero as well.

Using compact notation α˝ ” α˝pβ,γ1, δ1q :“ ψ1p1Jγ1 ` βq, with
β ÞÑ ψ1pβq denoting the right-inverse of α ÞÑ φpα, δ1q,

p̌1p0, δq “ ξpδq “
λ

r

bp´γ31, 1Jδq ´ bpα˝ ` γ21, 1Jδq

α˝ ` γ21 ` γ31
.

We found all ingredients that allow evaluation of π˝
1pαq.
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Gerber-Shiu metrics, ctd.

Theorem
For any α ě 0, β ą 0, γ1,γ2 ě 0, γ3 ď 0,

πpαq “
rpπ˝

1pα2q ` π˝
2pα1qq ´ λζpαq

φpαq ´ 1Jγ1 ´ β
,

where

π˝
2pαq “ ´π˝

1
`

ω2pα, 1Jγ1 ` βq
˘

`
λ

r
ζ

`

α, ω2pα, 1Jγ1 ` βq
˘

and π˝
1pαq as determined above.
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CHAPTER VIII: ARRIVAL PROCESSES
WITH CLUSTERING
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Arrival processes with clustering: main ideas

This chapter: CL model driven by claim arrival process with randomly
fluctuating rate.

Arrival rate is stochastic process, evolving as
˝ M/G/8 queue (to do justice to fluctuating number of clients);
˝ shot-noise process (to model impact of catastrophic events);
˝ Hawkes process (to model effect of claims triggering additional

claims).
Objective: determine, in light-tailed context, decay rate of ruin
probability.

The proofs rely either on change-of-measure, or on large deviations
argumentation.
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Arrival processes with clustering: main ideas, ctd.

Exact analysis of ppuq or ppu,Tβq is prohibitively difficult. Therefore:
asymptotics of ppuq.

Relevant in analysis: Limiting Laplace exponent Φpαq. With Y ptq net
cumulative claim process,

Φpαq :“ lim
tÑ8

1
t
logE e´αY ptq.

Assume net-profit condition holds:

lim
tÑ8

EY ptq

t
“ ´Φ1p0q ă 0.
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Arrival processes with clustering: main ideas, ctd.

Φp´θq: limiting moment generating function.

Other relevant function: Legendre transform I paq. For a P R,

I paq :“ sup
θą0

`

θa ´ Φp´θq
˘

,

which is non-negative and convex, and attains its minimal value 0 at
a “ ´Φ1p0q; see Exercise 8.1.
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Arrival processes with clustering: main ideas, ctd.

For all three arrival processes, we prove

lim
uÑ8

1
u
log ppuq “ ´θ‹,

where θ‹ ą 0 is such that Φp´θ‹q “ 0.

Strategy: prove that ´θ‹ is lower bound (follows easily), and prove that
´θ‹ is upper bound (way harder).

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Arrival processes with clustering: main ideas, ctd.
Lower bound: as in large deviations based approach (Section 2.2):

˝ Observe: for any T ą 0, ppuq “ PpȲ p8q ě uq ě PpY pTuq ě uq.
˝ Hence, for all T , u ą 0,

1
u
log ppuq ě

T

Tu
logP

ˆ

Y pTuq

Tu
ě

1
T

˙

.

˝ Consequently, for all T ą 0,

lim inf
uÑ8

1
u
log ppuq ě ´T I p1{T q.

(as the increments are now not i.i.d., instead of Cramér’s theorem,
the Gärtner-Ellis theorem needs to be used).

˝ Lower bound applies to any T ą 0. Hence,

lim inf
uÑ8

1
u
log ppuq ě ´I ‹ :“ ´ inf

Tą0
TI p1{T q.

˝ Then, as in Section 2.2, I ‹ “ θ‹.
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Arrival processes with clustering: main ideas, ctd.

Large deviations results allow for appealing interpretation.
Denote T ‹ :“ arg infTą0 TI p1{T q.

Then ∆‹ :“ 1{T ‹ can be interpreted as ‘cheapest’ slope to reach high
level. Given high level u is exceeded (rare event!), the most likely way is
‘roughly linear’ with slope ∆‹.

Likewise, T ‹u is proxy for typical time it takes to exceed level u.
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Arrival processes with clustering: main ideas, ctd.

Upper bound: Considerably harder!

We consider three arrival processes; proofs rely on techniques developed
in Section 2.2:

˝ for model with M/G/8 driven arrivals we use proof based on a
change-of-measure,

˝ whereas for shot-noise and Hawkes driven arrivals we rely on
large-deviations based argumentation.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



M/G/8 driven arrivals

Model:
˝ New clients arrive according to a Poisson process with rate ν ą 0.

They stay i.i.d. times in system, with dpαq LST of generic sojourn
time D.
Number of clients simultaneously present: M/G/8 system.
Stationary distribution is Poisson with parameter ν ED.

˝ While in system each client generates i.i.d. claims with LST bpαq

according to Poisson process with rate λ.
˝ Premiums are generated at constant rate r (by full population, being

of fluctuating size, that is).
The claim arrival rate is thus following stochastic process Λptq that is
proportional to the number of clients in M/G/8 queue.
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M/G/8 driven arrivals, ctd.

t

Λptq

Figure: Arrival rate process Λptq in M/G/8 case.
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M/G/8 driven arrivals, ctd.

Net profit condition:
λ pνEDq ¨ EB ă r ,

(Interpretation?).

Proposition
As t Ñ 8,

1
t
logE e´αY ptq Ñ Φpαq “ rα ´ ν ` ν d

`

λp1 ´ bpαqq
˘

.
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M/G/8 driven arrivals, ctd.
Proof. Number of client arrivals in r0, tq is Poisson with mean νt.
Well-known: given the number of arrivals, each of them enters at a
position that is uniformly distributed on p0, tq.

Hence,

1
t
logE e´αY ptq “ rα `

1
t
log

8
ÿ

i“0

e´νt pνtqi

i !

`

Ztpαq
˘i

“ rα ´ ν ` νZtpαq,

where

Ztpαq :“
1
t

˜

ż t

0

ż u

0
PpD P dsq

8
ÿ

j“0

e´λs pλsqj

j!

`

bpαq
˘j
du `

ż t

0
PpD ě uq

8
ÿ

j“0

e´λu pλuqj

j!

`

bpαq
˘j
du

¸

.

(Check!).
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M/G/8 driven arrivals, ctd.

Simplifies to

1
t

˜

ż t

0

ż u

0
PpD P dsqe´λsp1´bpαqq du `

ż t

0
PpD ě uqe´λup1´bpαqq du

¸

.

First term: clients who have left by time t. Second term: clients who are
still present at time t.

Left: computation of the limit of Ztpαq as t Ñ 8. First term:
interchanging integrals gives

1
t

ż t

0

ż u

0
PpD P dsqe´λsp1´bpαqq du “

ż t

0

t ´ s

t
PpD P dsqe´λsp1´bpαqq

Ñ d
`

λp1 ´ bpαqq
˘

.

Second term vanishes.
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M/G/8 driven arrivals, ctd.

Let θ‹ ą 0 solve Φp´θ‹q “ 0 (implicitly requires both the clients’ sojourn
times and claim sizes to have light-tailed distributions).

Change of measure: ΦQpαq “ Φpα ´ θ‹q.

We can rewrite, with λQ :“ λbp´θ‹q and dQ :“ dpλ´ λQq,

Φpα ´ θ‹q “ rpα ´ θ‹q ´ ν ` ν d
`

λp1 ´ bpα ´ θ‹qq
˘

“ rα ´ ν dQ ` ν dQ

d

ˆ

λQ

ˆ

1 ´
bpα ´ θ‹q

bp´θ‹q

˙

` λ´ λQ

˙

dQ
.
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M/G/8 driven arrivals, ctd.

Conclude: under new measure Q process Y ptq is still M/G/8 driven net
cumulative claim process, but now with

˝ client arrival rate νQ :“ ν dQ,
˝ client sojourn times with LST

EQe
´αD “

dpα ` λ´ λQq

dpλ´ λQq
,

˝ claim arrival rate λQ,
˝ and claim sizes with LST

EQe
´αB “

bpα ´ θ‹q

bp´θ‹q
.
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M/G/8 driven arrivals, ctd.

Informally, process Y ptq reaching high level u is combined effect of:
(i) higher client arrival rate, (ii) longer client sojourn times, (iii) higher
claim arrival rate, and (iv) larger claims.
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M/G/8 driven arrivals, ctd.

Objective: derive upper bound ppuq ď e´θ‹u. Mimic change-of-measure
based approach of Section 2.2.

At moment τpuq that ru,8q has been reached, we have sampled client
interarrival times F ” pF1, . . . ,FNq and their sojourn times
D ” pD1, . . . ,DNq.

For each of the clients, we sample number of claims during their sojourn
time, i.e., M ” pM1, . . . ,MNq, where the corresponding arrival epochs
are uniformly distributed over their sojourn times.
Claim sizes are

B ”
`

B11, . . . ,B1M1 ,B21, . . . ,B2M2 , . . . ,BN1,...,NMN

˘

.

Precise sampling procedure: see book.
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M/G/8 driven arrivals, ctd.

Each time random object is sampled: update the likelihood ratio.

Let τpuq be stopping time. Is (under Q) finite almost surely. (Why?) As
before: N the number of clients that have arrived by time τpuq.

Hence ppuq equals likelihood ratio

EQLpF ,D,M ,Bq.

Let fPp¨q and fQp¨q be densities of B under P and Q, respectively.
Likewise, gPp¨q and gQp¨q are densities of D under P and Q, respectively.

The likelihood ratio can be decomposed into four factors.
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M/G/8 driven arrivals, ctd.
1. First (LF ) corresponds to client arrivals. Suppose first arrival is at

time s, we obtain evident contribution

ν

νQ

e´νs

e´νQs
“

1
dQ

e´νs

e´νQs
.

For this client we sample its specifics (sojourn time, claim arrival
times, claim sizes).
Next client arrival: suppose it is scheduled at (say) t time units from
current time, if this leads to a client arrival at s P p0, ts time units
from current time, then we get contribution

1 ´ e´νt

1 ´ e´νQt

ν e´νs{p1 ´ e´νtq

νQ e´νQs{p1 ´ e´νQtq
“

ν

νQ

e´νs

e´νQs
“

1
dQ

e´νs

e´νQs
;

if it does not lead to client arrival before next scheduled event, then
contribution is

e´νt

e´νQt
.
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M/G/8 driven arrivals, ctd.

1. Combining the above,

LF “ epνQ´νq τpuq

ˆ

ν

νQ

˙N

“ epνQ´νq τpuq
`

dQ
˘´N

.

2. Second contribution, LD , corresponds to the sojourn time durations.
Check that

LD “

N
ź

i“1

gPpDi q

gQpDi q
“ epλ´λQq

řN
i“1 Di

`

dQ
˘N
.
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M/G/8 driven arrivals, ctd.

3. Third contribution concerns claim arrival times. Under both P and
Q, conditional on number of arrivals, arrival epochs are uniformly
distributed, independently of each other (thus not contributing to
likelihood ratio). Therefore,

LM “

N
ź

i“1

e´λDi pλDi q
Mi {Mi !

e´λQDi pλQDi q
Mi {Mi !

“ e´pλ´λQq
řN

i“1 Di

ˆ

λ

λQ

˙

řN
i“1 Mi

“ e´pλ´λQq
řN

i“1 Di pbp´θ‹qq´M`

,

where M` :“
řN

i“1 Mi .
4. Last contribution concerns claim sizes:

LB “

N
ź

i“1

Mi
ź

j“1

fPpBijq

fQpBijq
“ e´θ‹B`

pbp´θ‹qqM
`

, with B` :“
N

ÿ

i“1

Mi
ÿ

j“1

Bij .

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



M/G/8 driven arrivals, ctd.
Since B` is sum of the claims issued by time τpuq,

B` ´ rτpuq ě Y pτpuqq ě u.

(Why?) Recalling that rθ‹ “ νQ ´ ν, we find an upper bound for ppuq:

ppuq “ EQLpF ,D,M ,Bq “ EQ
“

LFLDLMLB
‰

“ epνQ´νq τpuqe´θ‹B`

ď e´θ‹u.

Is Lundberg-type inequality for this M/G/8 driven CL model.

In combination with lower bound, we find following result.

Theorem
In the model with M/G/8 driven arrivals,

lim
uÑ8

1
u
log ppuq “ ´θ‹.
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Shot-noise driven arrivals

Now: CL model in which arrival rate is shot-noise process:
˝ Let Di be sequence of i.i.d. non-negative random variables,

distributed as e generic random variable D with LST dpαq.
˝ Let Mptq be Poisson process with intensity ν ą 0, and let Ti be i-th

arrival time it generates.
˝ Parameter s ą 0 describes how fast ‘shots’ decay in time:

Λptq “

Mptq
ÿ

i“1

Die
´spt´Ti q.

Main idea behind using shot-noise arrival rate in insurance context:
process is well suited to model impact of (randomly arriving) catastrophic
events. Floods, windstorms, earthquakes cause a ‘pulse’ in claim arrival
rate, which eventually fades away.
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Shot-noise driven arrivals, ctd.

t

Λptq

Figure: Arrival rate process Λptq in shot-noise case.
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Shot-noise driven arrivals, ctd.
Assume that (to ensure that Y ptq eventually drifts to ´8)

ED
s

¨ ν EB ă r .

Number of claims Nptq in r0, ts is Poisson with random parameter

Λ̄ptq :“

ż t

0
Λpuq du.

To evaluate Φpαq, above properties lead to

1
t
logE e´αY ptq “ rα `

1
t
logE

“

bpαqNptq
‰

“ rα `
1
t
logE

«

8
ÿ

i“0

e´Λ̄ptq pΛ̄ptqqi

i !

`

bpαq
˘i

ff

“ rα `
1
t
logE e´Λ̄ptqp1´bpαqq.

Hence to find expression for Φpαq, we are to compute LST of Λ̄ptq.
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Shot-noise driven arrivals, ctd.

Observe

Λ̄ptq “

Mptq
ÿ

i“1

Di

ż t´Ti

0
e´su du “

Mptq
ÿ

i“1

Di
1 ´ e´spt´Ti q

s
.

Recall: Mptq is Poisson with parameter νt. Also, conditional on number
of shot arrivals, each of them arrives at uniformly distributed epoch,
independently of each other. Hence,

E e´αΛ̄ptq “

8
ÿ

k“0

e´νt pνtqk

k!

ˆ
ż t

0

1
t
E exp

ˆ

´αDi
1 ´ e´su

s

˙

du

˙k

“ exp

ˆ

´νt ` ν

ż t

0
d

ˆ

α
1 ´ e´su

s

˙

du

˙

.
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Shot-noise driven arrivals, ctd.

Upon combining the above, and sending t to 8, we have proved the
following result.

Proposition
As t Ñ 8,

1
t
logE e´αY ptq Ñ Φpαq “ rα ´ ν

ˆ

1 ´ d

ˆ

1 ´ bpαq

s

˙˙

.
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Shot-noise driven arrivals, ctd.

Goal: prove that decay rate of ppuq is upper bounded by ´θ‹; use
method of Section 2.2.

Starting point: for u ą r ,

ppuq ď P pDn P N : Y pnq ě u ´ rq ,

(use that net cumulative claim process decreases with at most r per unit
of time). Hence: upper bound on ppuq that corresponds to countable
number of events.
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Shot-noise driven arrivals, ctd.

Recall definition of T ‹, and interpretation of T ‹u as typical time to
exceed u.

Intuition behind proof: one term contains contribution of epochs n in
order of T ‹u (and is therefore ‘dominant’), and term that contains other
contributions (and is therefore ‘negligible’).

Indeed, in combination with union bound,

ppuq ď

T‹
p1`εqu
ÿ

n“1

P pY pnq ě u ´ rq `

8
ÿ

n“T‹p1`εqu`1

P pY pnq ě u ´ rq

ď

T‹
p1`εqu
ÿ

n“1

P pY pnq ě u ´ rq `

8
ÿ

n“T‹p1`εqu`1

P pY pnq ě 0q ,

where ε ą 0 will be picked below.
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Shot-noise driven arrivals, ctd.

Due to Chernoff bound, for any θ ą 0 second term is dominated by

8
ÿ

n“T‹p1`εqu`1

P pY pnq ě 0q ď

8
ÿ

n“T‹p1`εqu`1

E eθY pnq.

Let θ˝ ą 0 be such that Φ1p´θ˝q “ 0. (As there is a θ‹ such that
Φp´θ‹q “ 0, this θ˝ exists, and is smaller than θ‹).

From Φ1p0q ą 0 and Φpαq being convex, conclude that Φp´θ˝q ă 0. It is
readily seen that ´Φp´θ˝q “ I p0q ą 0; see Exercise 8.1.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Shot-noise driven arrivals, ctd.

Let n be sufficiently large to ensure that

1
n
logE eθ

˝Y pnq ď Φp´θ˝q ` δ “ ´I p0q ` δ,

for some δ P p0, I p0qq; possible due to Proposition (entailing
t´1 logE e´αY ptq Ñ Φpαq).

Recognizing geometric sum, we thus find, with z :“ expp´I p0q ` δq ă 1,

8
ÿ

n“T‹p1`εqu`1

P pY pnq ě 0q ď
zT

‹
p1`εqu`1

1 ´ z
.
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Shot-noise driven arrivals, ctd.
Now consider first sum (contains most significant contributions, and is
therefore dominant). Again using Chernoff bound,

T‹
p1`εqu
ÿ

n“1

P pY pnq ě u ´ rq ď

T‹
p1`εqu
ÿ

n“1

e´θ‹
pu´rq E eθ

‹Y pnq

ď
`

T ‹p1 ` εqu
˘

max
n“1,...,T‹p1`εqu

e´θ‹
pu´rq E eθ

‹Y pnq.

Then observe that, using that the LST dpαq is decreasing and
1 ´ bp´θ‹q ă 0, for any t ě 0,

logE eθ
‹Y ptq “ ´rθ‹t ´ νt ` ν

ż t

0
d

ˆ

p1 ´ bp´θ‹qq
1 ´ e´su

s

˙

du

ď

ˆ

´rθ‹ ´ ν ` νd

ˆ

1 ´ bp´θ‹q

s

˙˙

t “ Φp´θ‹q t “ 0.
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Shot-noise driven arrivals, ctd.

Combining the above, and using that u´1 log u Ñ 0 as u Ñ 8, decay
rate of first sum is at most ´θ‹:

lim
uÑ8

1
u
log

ˆ

`

T ‹p1 ` εqu
˘

e´θ‹
pu´rq max

n“1,...,T‹p1`εqu
E eθ

‹Y pnq

˙

ď ´θ‹.
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Shot-noise driven arrivals, ctd.
We thus have upper bound, with constant ε still to be chosen,

lim
uÑ8

1
u
log ppuq ď ´min tθ‹, pI p0q ´ δqT ‹p1 ` εqu .

We pick

ε ą
θ‹

T ‹

1
I p0q ´ δ

´ 1 “
I p1{T ‹q

I p0q ´ δ
´ 1,

where equality follows from θ‹ “ T ‹ I p1{T ‹q; note that number on
right-hand side is positive because I paq is increasing for a ą 0.
Then θ‹ ă pI p0q ´ δqT ‹p1 ` εq; hence contribution of second sum
vanishes. Now recall θ‹ is lower bound on decay rate as well.

Theorem
In the model with shot-noise driven arrivals,

lim
uÑ8

1
u
log ppuq “ ´θ‹.
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Hawkes driven arrivals

Consider counting process Mptq, corresponding to epochs T1,T2, . . . (in
that process Mptq increases by 1 at T1,T2, . . .), defined as follows. Let,
as ∆t Ó 0,

P
`

Mpt ` ∆tq ´ Mptq “ 1 |Λpsq, s P r0, ts
˘

“ Λptq∆t ` op∆tq,

P
`

Mpt ` ∆tq ´ Mptq “ 0 |Λpsq, s P r0, ts
˘

“ 1 ´ Λptq∆t ` op∆tq,

where, for given parameter ν ą 0,

Λptq “ ν `

Mptq
ÿ

i“1

Dihpt ´ Ti q “ ν `
ÿ

i :Tiďt

Dihpt ´ Ti q.

Process Λptq is Hawkes process. Function hp¨q describes how impact of
‘shots’ Di vanishes over time. Goal: find decay rate of ppuq for CL model
with Hawkes claim arrivals.
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Hawkes driven arrivals, ctd.

t

Λptq

ν

Figure: Arrival rate process Λptq in Hawkes case.
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Hawkes driven arrivals

Current arrival rate depends on observed sequence of past arrival times;
‘self-exciting’.

In insurance context Hawkes arrival rate is used in case one wishes to
model effect of claims triggering additional claims.

Require H ED ă 1, with

H :“

ż 8

0
hpuq du,

so that Λptq does not explode as t Ñ 8. In addition, require that

1
1 ´ H ED

¨ ν EB ă r ,

such that Y ptq eventually drifts to ´8.
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Hawkes driven arrivals, ctd.

Under above conditions, next result gives (implicit) characterization of
limiting Laplace exponent.

Proposition
As t Ñ 8,

1
t
logE e´αY ptq Ñ Φpαq “ rα ´ ν

`

1 ´ ηpbpαqq
˘

,

where ηpzq is the unique root in r0, 1q of fixed-point equation

ηpzq “ z dpp1 ´ ηpzqqHq.
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Hawkes driven arrivals, ctd.

Derivation of this result relies heavily on representation of Hawkes
process as branching process.

Definition of Λptq reveals that Hawkes arrival process can be split into
˝ Poisson process with constant rate ν, in the sequel referred to as

immigrants,
˝ arrivals that are induced by the immigrants.

Thus, each of immigrants increases future arrival rate. Arrivals that
occur due to this increase, are called children of this immigrant. In turn,
those children are potentially parents of next generation, and so forth.
Useful recursive structure, leads to fixed-point equation for ηpzq.
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Hawkes driven arrivals, ctd.

Proof. First objective: analyze transform of Nptq (number of claim
arrivals in r0, tq).
Let Spuq represent number of children of immigrant, u time units after
its own birth, including immigrant itself. Define pgf ηpu, zq :“ E zSpuq,
for z ď 1.

Then

E zNptq “

8
ÿ

k“0

e´νt pνtqk

k!

ˆ

1
t

ż t

0
ηpu, zq du

˙k

“ exp

ˆ

´νt ` ν

ż t

0
ηpu, zq du

˙

.
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Hawkes driven arrivals, ctd.

Next task: identification of ηpu, zq, done by studying each cluster
separately.

Key element: distributional equality, for fixed t ą 0 and u P r0, ts,

Spuq
d
“ 1 `

ÿ

i :Tiďu

Si pu ´ Ti q “ 1 `

Kpuq
ÿ

i“1

Si pu ´ Ti q,

where Si puq are i.i.d. copies of Spuq; here T1,T2, . . . are birth times of
corresponding children, and K puq is inhomogeneous Poisson counting
process with rate Dhpuq (conditional on sampled value of D that
corresponds to immigrant under consideration, that is).

Interpretation: Si puq is number of children of child i (including the child
itself).
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Hawkes driven arrivals, ctd.

Ptpsq: probability that, conditional on a child being born before time t, it
was actually already born before s, for s ď t. Then,

Ptpsq “
PpK psq “ K ptq “ 1q

PpK ptq “ 1q
“

PpK psq “ 1,K ptq ´ K psq “ 0q

PpK ptq “ 1q
.

Conditional on D, we thus find, with

rps, tq :“ D

ż t

s

hpuq du, Hptq :“

ż t

0
hpuq du,

that

Ptpsq “
rp0, sqe´rp0,sq ¨ e´rps,tq

rp0, tqe´rp0,tq
“

Hpsq

Hptq
;

note that D cancels. Now define ptpsq :“ P 1
tpsq “ hpsq{Hptq.
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Hawkes driven arrivals, ctd.
Appealing to distributional equality, and conditioning on D,

ηpu, zq “

ż 8

0

8
ÿ

k“0

E
“

zSpuq |K puq “ k ,D “ x
‰

PpK puq “ k |D “ xqPpD P dxq

“ z

ż 8

0

8
ÿ

k“0

E

«

k
ź

i“1

zSpu´Ti q

ff

e´xHpuq pxHpuqqk

k!
PpD P dxq

“ z

ż 8

0

8
ÿ

k“0

ˆ
ż u

0
ηpu ´ s, zq pupsq ds

˙k

e´xHpuq pxHpuqqk

k!
PpD P dxq

“ z

ż 8

0
exp

ˆ

´x

ż u

0
p1 ´ ηpu ´ s, zqq hpsq ds

˙

PpD P dxq,

which leads to the fixed-point equation

ηpu, zq “ z d

ˆ
ż u

0
p1 ´ ηpu ´ s, zqq hpsq ds

˙

.
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Hawkes driven arrivals, ctd.

Now focus on identifying Φpαq. First consider E e´αY ptq, which we
express in terms of ηpu, bpαqq. Observe:

1
t
logE e´αY ptq “ rα ´

1
t
logE

“

bpαqNptq
‰

.

Hence,

Φpαq “ rα ´ ν

ˆ

1 ´ lim
tÑ8

1
t

ż t

0
ηpu, bpαqq du

˙

“ rα ´ ν p1 ´ ηp8, bpαqqq ,

where, because of fixed-point equation for ηpu, zq, it follows that
ηp8, zq “ ηpzq solves fixed-point equation featuring in statement of
Proposition.
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Hawkes driven arrivals, ctd.

Theorem
In the model with Hawkes driven arrivals,

lim
uÑ8

1
u
log ppuq “ ´θ‹.
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Hawkes driven arrivals, ctd.

Proof. Completely analogous to that of case with shot-noise driven
arrivals, except that we have to find a new proof of logE eθ

‹Y ptq ď 0.

From definition of Spuq it follows that Sp8q ě Spuq for all u ě 0, so that
for all z P r0, 1s we have that ηpu, zq ď ηp8, zq. Using bp´θ‹q ă 1,

ż t

0
ηpu, bp´θ‹qq du ď

ż t

0
ηp8, bp´θ‹qq du “ t ηp8, bp´θ‹qq.

Hence,

logE eθ
‹Y ptq “ ´rθ‹t ´ νt ` ν

ż t

0
ηpu, bp´θ‹qq du

ď
`

´rθ‹ ´ ν
`

1 ´ ηpbp´θ‹qq
˘˘

t “ Φp´θ‹q t “ 0.
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CHAPTER IX: DEPENDENCE BETWEEN
CLAIM SIZES AND INTERARRIVAL TIMES
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Dependence between claim sizes and interarrival times:
main ideas

This chapter: dependence between claims and interarrival times.

˝ Claim size being correlated with previous interarrival time;
˝ interarrival time being correlated with previous claim size.

Objective: determine transform of time-dependent ruin probability.
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Claim size correlated with previous interarrival time

Model 1. Claim size directly determines parameter of exponential
distribution of preceding interclaim time.

Concretely: if claim size is v ą 0, then length of interval between
previous claim’s arrival time and this claim’s arrival time has exponential
distribution with parameter λpvq ą 0.

The time-dependent ruin probability ppu, tq and the double transform
πpα, βq are defined in the usual manner.
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Claim size correlated with previous interarrival time, ctd.

Approach of Section 1.3: πpα, βq is written as sum of π1pα, βq (ruin due
to first arriving claim) and π2pα, βq (ruin occurring later).

First contribution:

π1pα, βq “

ż 8

0

λpvq

λpvq ` β

ˆ

1 ´ e´αv

α
´

e´pλpvq`βqv{r ´ e´αv

α ´ pλpvq ` βq{r

˙

PpB P dvq.

With spv , βq defined as pλpvq ` βq{r , this quantity can be interpreted as

π1pα, βq “ E
ˆ

λpBq

λpBq ` β

ˆ

1 ´ e´αB

α
´

e´spB,βq B ´ e´αB

α ´ spB, βq

˙˙

,

which we can calculate (as we know the distribution of B).
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Claim size correlated with previous interarrival time, ctd.

Second contribution, as in Section 1.3:

π2pα, βq “

ż 8

0

λpvq

r

ˆ
ż 8

v

e´spv ,βqw ´ e´αw

α ´ spv , βq
ppw ´ v ,Tβq dw

˙

PpB P dvq.

Directly seen: π2pα, βq can be written as difference of

π`
2 pα, βq :“

ż 8

0

λpvq

r

ˆ
ż 8

v

e´spv ,βqw

α ´ spv , βq
ppw ´ v ,Tβq dw

˙

PpB P dvq

“

ż 8

0

λpvq

rpα ´ spv , βqq
e´spv ,βqv

ˆ
ż 8

0
e´spv ,βqw ppw ,Tβq dw

˙

PpB P dvq

“ E
ˆ

λpBq

rpα ´ spB, βqq
e´spB,βq B π

`

spB, βq, β
˘

˙

,

which is an expression that we cannot further evaluate (yet), and
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Claim size correlated with previous interarrival time, ctd.

π´
2 pα, βq :“

ż 8

0

λpvq

r

ˆ
ż 8

v

e´αw

α ´ spv , βq
ppw ´ v ,Tβq dw

˙

PpB P dvq

“

ż 8

0

λpvq

rpα ´ spv , βqq
e´αvPpB P dvq

ż 8

0
e´αw ppw ,Tβq dw

“ E
ˆ

λpBq

rpα ´ spB, βqq
e´αB

˙

πpα, βq.

Observe that

π˝pα, βq :“ E
ˆ

λpBq

rpα ´ spB, βqq
e´αB

˙

“ ´E
ˆ

λpBq

λpBq ` β ´ rα
e´αB

˙

,

which we can evaluate, as we know distribution of B.
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Claim size correlated with previous interarrival time, ctd.

Isolate the quantity of our interest:

πpα, βq “
π1pα, βq ` π`

2 pα, βq

1 ` π˝pα, βq
.

But: π`
2 pα, βq is not known yet.

Consider case that claim size distribution is given by

PpB ď vq “

d
ÿ

i“1

piUpv ´ bi q,

with Up¨q unit step function and p1, . . . , pd ą 0,
řd

i“1 pi “ 1. Hence:
there are K possible claim arrival rates λpb1q, . . . , λpbdq, assuming (wlog)
that λpb1q ď λpb2q ď . . . ď λpbdq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Claim size correlated with previous interarrival time, ctd.

Then

1 ` π˝pα, βq “ 1 ´

d
ÿ

i“1

pi
λpbi q

λpbi q ` β ´ rα
e´αbi “

f pαq ´ gpαq

f pαq
,

where

f pαq :“
d

ź

i“1

pλpbi q ` β ´ rαq,

and

gpαq :“
d

ÿ

i“1

pi
λpbi q

λpbi q ` β ´ rα
e´αbi f pαq.
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Claim size correlated with previous interarrival time, ctd.

Apply ‘Rouché’ to f pαq ´gpαq: it has exactly d zeroes in right-half plane.

Inspection of behavior of 1 ` π˝pα, βq at the asymptotes α “ spbi , βq,
i “ 1, . . . , d : these d zeroes of 1 ` π˝pα, βq (say, α‹

1pβq, . . . , α‹
dpβq) are

all real, exactly one being located in p0, spb1, βqq, one in
pspb1, βq, spb2, βqq, etc.

For those zeroes, numerator (i.e., π1pα, βq ` π`
2 pα, βq) should be zero,

too. Leads to d linear equations in the d remaining unknowns
πpspbj , βq, βq featuring in π`

2 pα, βq.

Thus, πpα, βq is completely determined.
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Claim size correlated with previous interarrival time, ctd.

Model 2. Sequence B1,B2, . . . represents the i.i.d. claim sizes. V1,V2, . . .
is second sequence of i.i.d. random variables, independent of the claim
sizes.

After n-th claim arrival, new claim interarrival time An`1, threshold value
Vn`1 and claim size Bn`1 are drawn. If Bn`1 “ v and z :“ v{Vn`1, then
An`1 is exponentially distributed with parameter λpzq ą 0. We consider
the case that λpzq attains values in r0,Ds for some D ą 0.
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Claim size correlated with previous interarrival time, ctd.

Objective: time-dependent ruin probability ppu,Tβq.

As ∆t Ó 0,

ppu,Tβq “

´

1 ´

ż D

0
λpzq∆t

ż 8

0
PpB P dvq dzPpV ă v{zq ´ β∆t

¯

ppu ` r ∆t,Tβq

`

ż D

0
λpzq∆t

ż 8

u

PpB P dvq dzPpV ă v{zq

`

ż D

0
λpzq∆t

ż u

0
PpB P dvq dzPpV ă v{zq ppu ´ v ,Tβq,

up to op∆tq terms.
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Claim size correlated with previous interarrival time, ctd.
Define

χpαq :“

ż D

0
λpzq

ż 8

0
e´αvPpB P dvq dzPpV ă v{zq.

Follow standard procedure: subtract ppu ` r ∆t,Tβq from both sides,
divide by ∆t, and take limit ∆ Ó 0. We obtain

´r
B

Bu
ppu,Tβq “ ´

`

χp0q ` β
˘

ppu,Tβq `

ż D

0
λpzq

ż 8

u

PpB P dvq dzPpV ă v{zq `

ż D

0
λpzq

ż u

0
PpB P dvq dzPpV ă v{zq ppu ´ v ,Tβq.

Next step: transform with respect to u, i.e., multiply both sides by e´αu

and integrate over u.
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Claim size correlated with previous interarrival time, ctd.

Define πpα, βq in usual manner, and denote f pβq :“ pp0`,Tβq.

Proposition
For any α, β ą 0,

´rαπpα, βq ` r f pβq

“ ´
`

χp0q ` β
˘

πpα, βq `
χp0q ´ χpαq

α
` χpαqπpα, βq.
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Claim size correlated with previous interarrival time, ctd.
Next goal: identify πpα, βq, which requires f pβq. Observe that

πpα, βq “
rf pβq ´ pχp0q ´ χpαqq{α

rα ´ χp0q ` χpαq ´ β
.

Notice: χpαq is Laplace transform of probability distribution, and hence
convex and decreasing. Therefore, denominator has exactly one positive
real zero α‹pβq for every β ą 0.

For any β ą 0, root of denominator is also root of numerator, so that

f pβq “
1
r

χp0q ´ χpα‹pβqq

α‹pβq
.

Theorem
For any α, β ą 0,

πpα, βq “
pχp0q ´ χpα‹pβqqq{α‹pβq ´ pχp0q ´ χpαqq{α

rα ´ χp0q ` χpαq ´ β
.
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Interarrival time being correlated with previous claim size
Mechanism is similar to Model 2 discussed above. Consider
z ” pz0, . . . , zdq such that 0 “ z0 ă z1 ă ¨ ¨ ¨ ă zd “ 8. Claim sizes
B1,B2, . . . are i.i.d. (distributed as B). In addition, V1,V2, . . . are i.i.d.,
independent of claim sizes (distributed as V ).

If claim Bn is in rzi´1Vn, ziVnq, then time until next claim is
exponentially distributed with rate λi ą 0.

Key object of interest: for i “ 1, . . . , d ,

pi pu, tq :“ PpDs P r0, ts : Xupsq ď 0 | Jp0q “ iq;

tJp0q “ iu corresponds to scenario that arrival rate at time 0 is λi .

Objective: characterize pi pu, tq through its double transform

πi pα, βq “

ż 8

0

ż 8

0
βe´αu´βtpi pu, tq du dt.
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Interarrival time correlated with previous claim size, ctd.

By familiar method, up to op∆tq terms, with Tβ exponentially
distributed with parameter β, as ∆t Ó 0,

pi pu,Tβq “ λi ∆t
d

ÿ

j“1

ż u

0
PpB P dvqP

`

V P r
v

zj
,

v

zj´1
q
˘

pjpu ´ v ,Tβq

` λi ∆t PpB ě uq `
`

1 ´ λi ∆t ´ β∆t
˘

pi pu ` r ∆t,Tβq.

Subtracting pi pu ` r ∆t,Tβq from both sides and dividing full equation
by ∆t, sending ∆t to 0:

´r
B

Bu
pi pu,Tβq “ λi

d
ÿ

j“1

ż u

0
PpB P dvqP

`

V P r
v

zj
,

v

zj´1
q
˘

pjpu ´ v ,Tβq `

λi PpB ě uq ´ pλi ` βq pi pu,Tβq.
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Interarrival time correlated with previous claim size, ctd.
Define, for j “ 1, . . . , d ,

χjpαq :“

ż 8

0
e´αv PpB P dvqP

`

V P r
v

zj
,

v

zj´1
q
˘

.

Multiply equation by e´αu and integrate over u. Integrating by parts,
and recognizing convolution in right-hand side, and denoting
fi pβq :“ pi p0`,Tβq, we obtain following result.

Proposition
For any α, β ą 0, and i “ 1, . . . , d ,

´rαπi pα, βq ` rfi pβq “ λi

d
ÿ

j“1

χjpαqπjpα, βq `

λi
1 ´ bpαq

α
´ pλi ` βqπi pα, βq.
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Interarrival time correlated with previous claim size, ctd.
Proposition provides equations, containing d unknowns f1pβq, . . . , fdpβq.
Observe that these equations yield that, for any pair i , j P t1, . . . , du,

`

rα ´ λi ´ β
˘

πi pα, βq ´ rfi pβq

λi
“

`

rα ´ λj ´ β
˘

πjpα, βq ´ rfjpβq

λj
,

or, equivalently,

πjpα, βq “ Aijpα, βqπi pα, βq ` Bijpα, βq,

where

Aijpα, βq :“
λj
λi

rα ´ λi ´ β

rα ´ λj ´ β
,Bijpα, βq :“ ´

λj
λi

rfi pβq

rα ´ λj ´ β
`

rfjpβq

rα ´ λj ´ β
.

Hence,

p´rα ` λi `β qπi pα, βq ` rfi pβq

“ λi

d
ÿ

j“1

χjpαq
`

Aijpα, βqπi pα, βq ` Bijpα, βq
˘

` λi
1 ´ bpαq

α
.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Interarrival time correlated with previous claim size, ctd.

Hence, πi pα, βq can be solved:

πi pα, βq “
rfi pβq ´ λi

řd
j“1 χjpαqBijpα, βq ´ λi p1 ´ bpαqq{α

rα ´ λi ` λi
řd

j“1 χjpαqAijpα, βq ´ β
.

Any zero of denominator should be zero of numerator as well. Minor
computation (for β ą 0 given and for i “ 1, . . . , d): solve Hpαq “ 1, with

Hpαq “

d
ÿ

j“1

λj
λj ` β ´ rα

χjpαq.
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Interarrival time correlated with previous claim size, ctd.

Observe: Hp0q ă 1, whereas Hpαq approaches 0 from below as α Ñ 8.
Assume (wlog) λ1 ă ¨ ¨ ¨ ă λd . With α0 “ 0 and αj :“ pλj ` βq{r , we
have that

lim
αÒαj

Hpαq “ 8, lim
αÓαj

Hpαq “ ´8,

for j “ 1, . . . , d .

Hence, for all β ą 0, there is solution to Hpαq “ 1 in each of intervals
pαj´1, αjq, for j “ 1, . . . , d . We call these zeroes α‹

1pβq, . . . , α‹
dpβq,

which are necessarily zeroes of numerator as well.
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Interarrival time correlated with previous claim size, ctd.
Consequently, for α “ α‹

1pβq, . . . , α‹
dpβq,

0 “ rfi pβq ´ λi

d
ÿ

j“1

χjpαqBijpα, βq ´ λi
1 ´ bpαq

α

“ rfi pβq
`

1 ´ Hpαq
˘

` λi r
d

ÿ

j“1

χjpαq

λj ` β ´ rα
fjpβq ´ λi

1 ´ bpαq

α
“: Ci pα, βq.

Using that Hpα‹
j pβqq “ 1 for j “ 1, . . . , d , after dividing by λi :

r
d

ÿ

j“1

χjpα
‹
j pβqq

λj ` β ´ rα‹
j pβq

fjpβq “
1 ´ bpα‹

j pβqq

α‹
j pβq

,

for j “ 1, . . . , d .

Observe: d linear equations do not depend on i anymore, so that fjpβq

can be identified.
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Interarrival time correlated with previous claim size, ctd.

Theorem
For any α ě 0 and β ą 0, and i “ 1, . . . , d ,

πi pα, βq “
Ci pα, βq

rα ´ λi ` λi
řd

j“1 χjpαqAijpα, βq ´ β
,

where the fjpβq, for j “ 1, . . . , d , follow from the d linear equations.
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A more general Markov-dependent risk model

Let Ai denote time between the arrival of pi ´ 1q-st and i-th claim and
A0 “ B0 “ 0. Then

PpAn`1 ď x ,Bn`1 ď y ,Zn`1 “ j |Zn “ i , pAm,Bm,Zmq,m P t0, 1, . . . , nuq

“ PpA1 ď x ,B1 ď y ,Z1 “ j |Z0 “ iq “ p1 ´ e´λixqpij Fjpyq,

where pZnqnPN is irreducible discrete-time Markov chain with finite state
space t1, . . . , du and transition matrix P consisting of transition
probabilities pij :“ PpZn`1 “ j |Zn “ iq.

Thus: at claim arrival, Markov chain jumps to state j , and distribution
function Fjp¨q of the claim size depends on new state j . Then next
interarrival time is exponentially distributed with parameter λj .
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A more general Markov-dependent risk model, ctd.

By and large, same strategy can be followed as before: set up differential
equation for pi pu,Tβq, transform with respect to u.

Leads to expressions for πi pα, βq, in terms of d unknowns. Identification
of these unknowns is a bit more involved, though (requires some complex
analysis).
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CHAPTER X: ADVANCED
BANKRUPTCY CONCEPTS
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Advanced bankruptcy concepts: main ideas

This chapter: CL model but with a focus on bankruptcy rather than ruin.

Three different bankruptcy criteria are studied:
˝ Reserve level process drops below 0 at Poisson inspection;
˝ time in first excursion (of reserve level process) below 0 exceeds

threshold;
˝ total time (of reserve level process) below 0 exceeds threshold.

Objective: determine transform of bankruptcy probability.
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Poisson inspection

Surplus level is only observed at Poissonian inspection epochs S1,S2, . . .,
i.e., not continuously in time.

Times between two subsequent inspections (i.e., Sn ´ Sn´1 for n P N,
with S0 ” 0) are i.i.d. exponentially distributed random variables, say
with parameter ω ą 0.

Quantity of interest: (time-dependent) bankruptcy probability

p̄pu, tq :“ PpDn P N : Sn ď t,XupSnq ď 0q.

Clearly, p̄pu, tq ď ppu, tq.
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Poisson inspection, ctd.

tTβ

Y ptq

u

tTβ

Y ptq

u

Figure: Scenario with ruin and bankruptcy (left panel), and scenario with ruin
but no bankruptcy (right panel). Black dots indicate Poisson inspection epochs.
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Poisson inspection, ctd.

Increments of Y ptq between two consecutive inspections, i.e.,

Zn :“ Y pSnq ´ Y pSn´1q,

which form sequence of i.i.d. random variables, distributed as generic
random variable Z .

Killing time Tβ is exponentially distributed with parameter β,
independent of surplus process.

Number of observations before killing, denoted by N ” Nβ,ω, has
geometric distribution with success probability β{pβ ` ωq:

PpN “ nq “

ˆ

ω

β ` ω

˙n
β

β ` ω
, n “ 0, 1, . . . .

(Check!)
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Poisson inspection, ctd.

Define associated running maximum process:

Ȳβ,ω :“ sup
n“0,1,...,Nβ,ω

Y pSnq “ sup
n“0,1,...,Nβ,ω

n
ÿ

m“1

Zm;

maximum over empty set is zero.

Notice that
p̄pu,Tβq “ PpȲβ,ω ě uq.

Goal: analyze p̄pu,Tβq by evaluating PpȲβ,ω ě uq. Important role is
played by transient waiting time in M/G/1 queue.
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Poisson inspection, ctd.

Focus on transform of waiting time WN of the N-th client in M/G/1
(starting empty), with N geometrically distributed with success
probability q P r0, 1s.

Arrival rate is ν ą 0. Jobs given by the sequence of i.i.d. random
variables pDnqnPN, distributed as generic random variable D with LST
δpαq “ E e´αD .
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Poisson inspection, ctd.
Lindley recursion: Wn`1 can be expressed in terms of Wn through,

Wn`1 “ maxtWn ` Dn ´ En`1, 0u,

with W0 “ 0 (suppressed elsewhere) and pEnqnPN exponentially
distributed with parameter ν.

This leads to identity, with wnpαq :“ E e´αWn ,

wn`1pαq “

ż 8

0

ż 8

0
e´αmaxtx´y ,0u νe´νy dy PpWn ` Dn P dxq.

Distinguishing between the cases x ď y and x ą y , this expression equals

ν

α ´ ν

ż 8

0
pe´νx ´ e´αxqPpWn ` Dn P dxq `

ż 8

0
e´νx PpWn ` Dn P dxq,

which, using that Wn and Dn are independent, leads to

wn`1pαq “
αwnpνq δpνq ´ ν wnpαq δpαq

α ´ ν
.
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Poisson inspection, ctd.

Now: find an expression of waiting time of the N-th client.

Multiplying both sides by p1 ´ qqnq and summing over n “ 0, 1, . . .:

E e´αWN “
qpα ´ νq ` αp1 ´ qq δpνqE e´νWN

α ´ ν ` νp1 ´ qq δpαq
.

Constant E e´νWN can be identified in the usual manner: there is
(unique) α0 P p0, νq such that the denominator vanishes, so that
numerator should be equal to 0 for this α0.
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Poisson inspection, ctd.

This zero α0 can be rewritten in a convenient form. With

Φpαq :“ E e´αpDn´En`1q “
ν

ν ´ α
δpαq,

we are to solve Φpα0q “ 1{p1 ´ qq. Hence, defining Ψp¨q as the
(right-)inverse of Φp¨q,

α0 “ Ψ

ˆ

1
1 ´ q

˙

.

There is exactly one real root between 0 and ν. (Check!)

Hence,

E e´νWN “
q

1 ´ q

ν ´ α0

α0

1
δpνq

.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Poisson inspection, ctd.

We found following result, which is counterpart of Theorem 1.1.

Lemma
For α ą 0 and q P r0, 1s,

E e´αWN “ q
α ´ ν ` pν ´ α0qα{α0

α ´ ν ` νp1 ´ qq δpαq

“

ˆ

α

α0
´ 1

˙

qν

α ´ ν ` νp1 ´ qq δpαq
.
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Poisson inspection, ctd.
Now: relate waiting times to associated running maximum process.

Lemma
Denote Fn :“ Dn´1 ´ En. For any n “ 0, 1, . . . ,

Wn
d
“ max

m“0,1,...,n

m
ÿ

i“1

Fi “: Gn.

Proof. By iterating the Lindley recursion,

Wn “ maxtWn´1 ` Fn, 0u “ maxtmaxtWn´2 ` Fn´1, 0u ` Fn, 0u

“ maxtWn´2 ` Fn´1 ` Fn,Fn, 0u.

After n iterations:

Wn “ max

#

max
m“1,...,n

n
ÿ

i“m

Fi , 0

+

.

Stated follows by reversing time.
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Poisson inspection, ctd.

By combining lemmas: expression for transform of running maximum
process pGnqnPN, with number of terms having a geometric distribution.

Conclude that

E e´αGN “ q
α ´ ν ` pν ´ α0qα{α0

α ´ ν ` νp1 ´ qq δpαq

“

ˆ

α

α0
´ 1

˙

qν

α ´ ν ` νp1 ´ qq δpαq
.
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Poisson inspection, ctd.

Now, for α ě 0 and β ą 0, focus on

ϱ̄pα, βq :“ E e´αȲβ,ω .

Recall: Ȳβ,ω is running maximum of partial sums of pZnqnPN, over
maximally Nβ,ω terms.

By ‘Wiener-Hopf’ (Proposition 1.2), we can decompose increments as

Z “ Z` ´ Z´,

with Z` and Z´ both non-negative and independent.

Next step: consider Z´ and Z` in greater detail.
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Poisson inspection, ctd.

tTω

Y ptq

Z`
Z´

Figure: The decomposition Z “ Z`
´ Z´.
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Poisson inspection, ctd.

˝ Observe: Z´ is distributed, again by ‘Wiener-Hopf’, as running
minimum of Y ptq over a period that is exponentially distributed
with parameter β ` ω. (Why?)
Section 1.3: this running minimum has exponential distribution with
parameter ψpβ ` ωq. Recall: ψp¨q is right inverse of
φpαq “ rα ´ λp1 ´ bpαqq.

˝ Results of Section 1.3:

E e´αZ`

“
α ´ ψpβ ` ωq

φpαq ´ β ´ ω

β ` ω

ψpβ ` ωq
.
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Poisson inspection, ctd.

Consequence of above observations: Ȳβ,ω can be interpreted as waiting
time of Nβ,ω-th client in M/G/1 queue (with service speed 1), where
Nβ,ω is geometrically distributed with success probability q :“ β{pβ ` ωq,
arrival rate is ν :“ ψpβ `ωq, and jump sizes D are distributed as Z`, i.e.,

δpαq :“
α ´ ψpβ ` ωq

φpαq ´ β ´ ω

β ` ω

ψpβ ` ωq
.
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Poisson inspection, ctd.

Combining the above, ϱ̄pα, βq equals

β

β ` ω
¨

α ´ ψpβ ` ωq ` pψpβ ` ωq ´ α0q
α

α0

α ´ ψpβ ` ωq ` ψpβ ` ωq
ω

β ` ω

α ´ ψpβ ` ωq

φpαq ´ β ´ ω

β ` ω

ψpβ ` ωq

.

Elementary calculus: this expression can be simplified to

β

β ` ω
¨

ψpβ ` ωq

α ´ ψpβ ` ωq

ˆ

α

α0
´ 1

˙

φpαq ´ β ´ ω

φpαq ´ β
.
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Poisson inspection, ctd.

Next step: identify α0. Note: α “ ψpβ ` ωq is root of denominator, but
automatically of numerator as well.

Therefore: consider other root of numerator, i.e., α0 “ ψpβq.
Rearranging the factors in numerators and denominators, we find
following result.

Theorem
For any α ě 0 and β ą 0,

ϱ̄pα, βq “
α ´ ψpβq

φpαq ´ β

β

ψpβq

φpαq ´ β ´ ω

α ´ ψpβ ` ωq

ψpβ ` ωq

β ` ω
.
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Poisson inspection, ctd.

This theorem: generalization of Theorem 1.1. Indeed, as ω Ñ 8, which
corresponds to ‘permanent inspection’, we recover Theorem 1.1.

In addition (Check!),

ϱ̄pα, βq “
ϱpα, βq

ϱpα, β ` ωq
.

Following remarkable distributional equality is obtained.

Theorem
For any β, ω ą 0,

Ȳ pTβq
d
“ Ȳ pTβ`ωq ` Ȳβ,ω,

with random variables on right-hand side independently sampled.
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Poisson inspection, ctd.

Now consider information loss due to Poisson inspection. Section 2.2:
approximation for ppuq for u large in case of light-tailed input.

We found γ, θ‹ ą 0 such that, as u Ñ 8,

ppuq eθ
‹u Ñ γ.

Question: how much lower is p̄puq :“ p̄pu,8q than ppuq?
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Poisson inspection, ctd.

Proposition
Assume B P L . As u Ñ 8,

p̄puq

ppuq
Ñ γ‹

ω :“
ψpωq

ψpωq ` θ‹
.

Proof: see book. Main idea: net cumulative claim process Y ˝ptq (i.e.,
different from our actual net cumulative claim process Y ptq, viz. with
claims Z`, exponentially distributed interclaim times Z´, and unit
premium rate) exceeds u, and then use result from Section 2.2.

This shows: γ‹
ω Ò 1 as ω grows large, as expected.
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Length of first excursion

As before: τpuq ruin time.

In addition, U˝puq: length of interval after τpuq at which level Xuptq
uninterruptedly attains a negative value (or: net cumulative claim process
Y ptq uninterruptedly attains a value above u).

Then,
Vβpuq :“ mintU˝puq,Tβ ´ τpuqu 1tτpuq ă Tβu.

Of interest when bankruptcy occurs when length of first excursion
exceeds some threshold.
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Length of first excursion, ctd.

u

t

Y ptq

τpuq U˝puq

Figure: Net cumulative claim process Y ptq, and quantities τpuq and U˝
puq.
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Length of first excursion, ctd.

We know from Section 5.4 how to compute overshoot (through its
transform)

PpY pτpuqq ´ u P dy , τpuq ď Tβq;

corresponding density is called hpu, y , βq.

Hence, by memoryless property of exponential distribution,

E e´αVβpuq “

ż 8

0
hpu, y , βqE e´α mintσpyq,Tβu dy ,

with σpuq time it takes for Y ptq to decrease by at least u.

Lemma 1.1: for any y ą 0,

E e´ασpyq “ e´ψpαq y .
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Length of first excursion, ctd.

Lemma
For any α ě 0 and β ą 0, and for any non-negative random variable X
that is independent of Tβ ,

E e´α mintX ,Tβu “
β

α ` β
`

α

α ` β
E e´pα`βqX .

Proof. Rewrite E e´α mintX ,Tβu by conditioning on Tβ :
ż 8

0
βe´βt E e´α mintX ,tu dt

“

ż 8

0
βe´βt

ż t

0
PpX P dxq e´αx dt `

ż 8

0
βe´βt

ż 8

t

PpX P dxq e´αt dt.

Then: swap order of integrals, evaluate integrals over t, and interpret the
obtained expressions in terms of the LST of X .
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Length of first excursion, ctd.
Combining the above (including the use of Lemma),

E e´αVβpuq “

ż 8

0
hpu, y , βq

ˆ

β

α ` β
`

α

α ` β
E e´pα`βqσpyq

˙

dy

“
β

α ` β
ppu,Tβq `

α

α ` β

ż 8

0
hpu, y , βq e´ψpα`βq y dy .

Interpret integral in terms of overshoot Y pτpuqq ´ u. Define

χpu, α, βq :“ E
`

e´ψpα`βq pY pτpuqq´uq 1tτpuq ď Tβu
˘

.

Proposition
For any α ě 0 and β ą 0,

E e´αVβpuq “
β

α ` β
ppu,Tβq `

α

α ` β
χpu, α, βq.
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Length of first excursion, ctd.
All expressions appearing in Proposition can be assessed. Indeed,

˝ as computed in Section 1.3,
ż 8

0
e´ωu ppu,Tβq du “ πpω, βq “

1
φpωq ´ β

ˆ

φpωq

ω
´

β

ψpβq

˙

,

˝ whereas the transform of χpu, α, βq follows from

κpω, β, γq :“

ż 8

0
e´ωu Epe´γ pY pτpuqq´uq1tτpuq ď Tβuq du

“
λ

φpωq ´ β

ˆ

bpψpβqq ´ bpγq

γ ´ ψpβq
´

bpωq ´ bpγq

γ ´ ω

˙

,

using the analysis of Sections 5.3–5.4, leading to
ż 8

0
e´ωu χpu, α, βq du “ κpω, β, ψpα ` βqq.
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Total time with negative surplus

Consider total time (until exponential killing) that net cumulative claim
process is larger than u:

Wβpuq :“

ż Tβ

0
1tXuptq ď 0u dt “

ż Tβ

0
1tY ptq ě uu dt.

Is of importance when bankruptcy depends on time surplus level is below
zero.

We analyze Wβpuq through its transform (with respect to u). Three
disjoint events:
(i) tτpuq ` U˝puq ď Tβu,
(ii) tτpuq ď Tβ ă τpuq ` U˝puqu, and
(iii) {Tβ ă τpuqu.
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Total time with negative surplus, ctd.

˝ Case (i) gives contribution

E
`

e´αU˝
puq1tτpuq ` U˝puq ă Tβu

˘

E e´αWβp0q,

which equals χpu, α, βqE e´αWβp0q (Exercise 10.2).
˝ Calling T̃β remaining part of Tβ given that Tβ ě τpuq plus

memoryless property: the contribution of Case (ii) is

E
`

e´αT̃β1tτpuq ď Tβ ,U
˝puq ą T̃βu

˘

“ E
`

e´αT̃β1tτpuq ď Tβu
˘

´ E
`

e´αT̃β1tτpuq ď Tβ ,U
˝puq ď T̃βu

˘

“
β

β ` α
ppu,Tβq ´

β

β ` α
χpu, α, βq.

˝ Case (iii) finally contributes PpTβ ă τpuqq “ 1 ´ ppu,Tβq.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Total time with negative surplus, ctd.

Adding the three contributions:

E e´αWβpuq “ χpu, α, βqE e´αWβp0q ` 1

´
α

α ` β
ppu,Tβq ´

β

α ` β
χpu, α, βq.

Recall: we can evaluate the transform (to u) of ppu,Tβq and χpu, α, βq

Hence, we are left with analyzing E e´αWβp0q.
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Total time with negative surplus, ctd.

To compute E e´αWβp0q, we work with two auxiliary random sequences:
˝ Let Di be the length of the i-th uninterrupted period that Y ptq is

negative (‘down’);
˝ likewise, we let Ui be the length of the i-th uninterrupted period

that Y ptq is non-negative (‘up’).
Observe: pDi ,Ui qiPN is sequence of i.i.d. two-dimensional random vectors;
let pD,Uq denote corresponding generic random vector.

Exploiting the regenerative structure,

E e´αWβp0q “ E
`

e´αU1tD ` U ď Tβu
˘

E e´αWβp0q `

E
`

e´αpTβ´Dq1tD ď Tβ ă D ` Uu
˘

` PpTβ ă Dq.

Goal: evaluate three unknown quantities.
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Total time with negative surplus, ctd.

u

t

Y ptq

D1 D2 D3 D4

U1 U2 U3

Figure: Net cumulative claim process Y ptq, and the quantities pDi ,Ui qiPN.
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Total time with negative surplus, ctd.

Start with Ω1pβq :“ PpTβ ă Dq.

PpTβ ě Dq can be rewritten as

ż 8

0
λe´pλ`βqt

ˆ
ż rt

0
PpB P dvqPpTβ ą τprt ´ vqq `

ż 8

rt

PpB P dvq

˙

dt

by conditioning on the first claim arrival time. Recalling that
PpTβ ą τpuqq “ ppu,Tβq, performing the change of variable s “ rt, and
splitting the exponent, this expression equals

λ

r

ż 8

0

ż s

0
PpB P dvq e´pλ`βq v{r pps ´ v ,Tβq e´pλ`βq ps´vq{r ds `

λ

r

ż 8

0

ż 8

s

PpB P dvq e´pλ`βq s{r ds.
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Total time with negative surplus, ctd.

Evaluating integrals in standard way, and recognizing underlying
convolution structure,

Ω1pβq “
β

λ` β
`

λ

λ` β
b

ˆ

λ` β

r

˙

´
λ

r
b

ˆ

λ` β

r

˙

π

ˆ

λ` β

r
, β

˙

,

with πpα, βq as given in Section 1.3. After some calculus:

Ω1pβq “
β

rψpβq
.
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Total time with negative surplus, ctd.
We now focus on Ω2pα, βq :“ Epe´αU1tD ` U ď Tβuq. For conciseness:
Y `
u the overshoot over level u, i.e., Y pτpuqq ´ u.

Then Ω2pα, βq equals, again by conditioning on first claim arrival time,

ż 8

0
λe´pλ`βqt

˜

ż rt

0
PpB P dvq

ż 8

rt´v

PpY `
rt´v P dy , τprt ´ vq ď Tβq

Epe´ασpyq1tσpyq ď Tβuq

`

ż 8

rt

PpB P dvqEpe´ασpv´rtq1tσpv ´ rtq ď Tβuq

¸

dt;

distinguish between (i) scenario in which after first claim arrival (before
Tβ) net cumulative claim process is below 0 (first term between
brackets), and (ii) scenario in which at first claim arrival net cumulative
claim process has exceeded 0 (second term between brackets). Expression
has been set up such that at first claim arrival (at end of D) and at the
end of U, killing time Tβ has not expired.
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Total time with negative surplus, ctd.

t

Y ptq

´rt
v ´ rt

y

σpyq

Y ptq

´rt

v ´ rt

σpv ´ rtqt

Figure: Net cumulative claim process Y ptq in scenario that multiple claims are
needed to exceed 0 (left panel), and in scenario that one claim suffices (right
panel). Left panel: first jump (of size v ă rt) happens at time t, eventually
leading to overshoot of y over level 0. Right panel first jump (of size v ě rt)
happens at time t, directly leading to overshoot of v ´ rt over level 0.

Advanced Ruin Theory Michel Mandjes (KdVI–UvA)



Total time with negative surplus, ctd.
Observe that, for any α ě 0 and β ą 0, and y ą 0,

Epe´ασpyq 1tσpyq ď Tβuq “

ż 8

0

ż t

0
e´αxβe´βt Ppσpyq P dxq dt

“

ż 8

0
e´pα`βq x Ppσpyq P dxq

“ E e´pα`βqσpyq “ e´ψpα`βq y .

Hence, substituting s for rt, Ω2pα, βq is sum of two terms:

λ

r

ż 8

0
e´pλ`βq s{r

ż s

0
PpB P dvqE

`

e´ψpα`βq Y `
s´v 1tτps ´ vq ď Tβuq ds,

and
λ

r

ż 8

0
e´pλ`βq s{r

ż 8

s

PpB P dvq e´ψpα`βq pv´sq ds.
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Total time with negative surplus, ctd.
Recognizing convolution structure, first term is

λ

r
b

ˆ

λ` β

r

˙

κ

ˆ

λ` β

r
, β, ψpα ` βq

˙

.

Second term: swap order of integrals (and elementary calculus):

λ
bpψpα ` βqq ´ bppλ` βq{rq

λ` β ´ rψpα ` βq
.

We conclude that

Ω2pα, βq “
λ

r
b

ˆ

λ` β

r

˙

κ

ˆ

λ` β

r
, β, ψpα ` βq

˙

`

λ
bpψpα ` βqq ´ bppλ` βq{rq

λ` β ´ rψpα ` βq
.

Inserting (known) expression for κpα, β, γq, we eventually find

Ω2pα, βq “
λ

r

bpψpβqq ´ bpψpα ` βqq

ψpα ` βq ´ ψpβq
.
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Total time with negative surplus, ctd.
Then: Ω3pα, βq :“ Epe´αpTβ´Dq1tD ď Tβ ă D ` Uuq. Again by
conditioning on first claim arrival time,

ż 8

0
λe´pλ`βqt

˜

ż rt

0
PpB P dvq

ż 8

rt´v

PpY `
rt´v P dy , τprt ´ vq ď Tβq

Epe´αTβ1tσpyq ą Tβuq

`

ż 8

rt

PpB P dvqEpe´αTβ1tσpv ´ rtq ą Tβuq

¸

dt.

For any α ě 0 and β ą 0, and y ą 0,

Epe´αTβ 1tσpyq ą Tβuq “

ż 8

0
e´αtβe´βt Ppσpyq ą tq dt

“
β

α ` β
Ppσpyq ą Tα`βq

“
β

α ` β

`

1 ´ e´ψpα`βq y
˘

.
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Total time with negative surplus, ctd.

Using same techniques as before,

Ω3pα, βq “
λ

r

β

α ` β
b

ˆ

λ` β

r

˙

¨

ˆ

κ

ˆ

λ` β

r
, β, 0

˙

´ κ

ˆ

λ` β

r
, β, ψpα ` βq

˙˙

`
λβ

α ` β

ˆ

1 ´ bppλ` βq{rq

λ` β
´

bpψpα ` βqq ´ bppλ` βq{rq

λ` β ´ rψpα ` βq

˙

.

Considerable calculus: simplifies to

Ω3pα, βq “
λ

r

β

α ` β

ˆ

1 ´ bpψpβqq

ψpβq
´

bpψpβqq ´ bpψpα ` βqq

ψpα ` βq ´ ψpβq

˙

.
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Total time with negative surplus, ctd.

Upon collecting above results, we have identified transform of Wβpuq.

Theorem
For any α ě 0 and β ą 0, E e´αWβpuq is given by

E e´αWβpuq “ χpu, α, βqE e´αWβp0q ` 1

´
α

α ` β
ppu,Tβq ´

β

α ` β
χpu, α, βq

with transforms of ppu,Tβq and χpu, α, βq as given above, and

E e´αWβp0q “
Ω1pβq ` Ω3pα, βq

1 ´ Ω2pα, βq
.
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