For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Brandts, J., Korotov, S., & Křížek, M. (2020). Simplicial Partitions with Applications to the Finite Element Method. (Springer Monographs in Mathematics). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-030-55677-8[details]
2019
Brandts, J., & Cihangir, A. (2019). On the combinatorial structure of 0/1-matrices representing nonobtuse simplices. Applications of Mathematics, 64(1), 1-31. https://doi.org/10.21136/AM.2018.0207-18[details]
Brandts, J., & Křížek, M. (2019). Simplicial vertex-normal duality with applications to well-centered simplices. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (pp. 761-768). (Lecture Notes in Computational Science and Engineering; Vol. 126). Springer. https://doi.org/10.1007/978-3-319-96415-7_71[details]
2017
Brandts, J., & Cihangir, A. (2017). Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group. Special Matrices, 5(1), 158-201. https://doi.org/10.1515/spma-2017-0014[details]
Brandts, J., & Cihangir, A. (2016). Geometric aspects of the symmetric inverse M-matrix problem. Linear Algebra and Its Applications, 506, 33–81. Advance online publication. https://doi.org/10.1016/j.laa.2016.05.015[details]
Brandts, J., Cihangir, A., & Křížek, M. (2015). Tight bounds on angle sums of nonobtuse simplices. Applied Mathematics and Computation, 267, 397-408. https://doi.org/10.1016/j.amc.2015.02.035[details]
2013
Brandts, J., & Cihangir, A. (2013). Counting triangles that share their vertices with the unit n-cube. In J. Brandts, S. Korotov, M. Křížek, J. Šístek, & T. Vejchodský (Eds.), Proceedings of the International Conference Applications of Mathematics 2013: Prague, May 15-17, 2013: in honor of the 70th birthday of Karel Segeth (pp. 1-12). Institute of Mathematics, Academy of Sciences of the Czech Republic. http://www.math.cas.cz/~am2013/proceedings/contributions/brandts.pdf[details]
Brandts, J., & da Silva, R. R. (2013). A Subspace-Projected Approximate Matrix Method for Systems of Linear Equations. East Asian Journal on Applied Mathematics, 3(2), 120-137. https://doi.org/10.4208/eajam.070213.280513a[details]
Brandts, J., Dijkhuis, S., de Haan, V., & Křížek, M. (2013). There are only two nonobtuse binary triangulations of the unit n-cube. Computational Geometry, 46(3), 286-297. https://doi.org/10.1016/j.comgeo.2012.09.005[details]
Brandts, J., van Hooff, J., Kuiper, C., & Steenkamp, R. (2012). From binary cube triangulations to acute binary simplices. In J. Brandts, J. Chleboun, S. Korotov, K. Segeth, J. Šístek, & T. Vejchodský (Eds.), Proceedings of the International Conference Applications of Mathematics 2012: in honor of the 60th birthday of Michal Křížek (pp. 31-42). Institute of Mathematics, Academy of Sciences of the Czech Republic. http://am2012.math.cas.cz/proceedings/contributions/brandts.pdf[details]
Křížek, M., Brandts, J., & Somer, L. (2012). Is Gravitational Aberration Responsible for the Origin of Dark Energy? In C. A. Del Valle, & D. F. Longoria (Eds.), Dark Energy: Theory, Implications and Roles in Cosmology (pp. 29-58). (Physics research and technology). Nova Publishers. https://www.novapublishers.com/catalog/product_info.php?products_id=34680[details]
Brandts, J., Korotov, S., & Křížek, M. (2011). A geometric toolbox for tetrahedral finite element partitions. In O. Axelsson, & J. Karátson (Eds.), Efficient preconditioned solution methods for elliptic partial differential equations (pp. 103-122). Bentham eBooks. https://doi.org/10.2174/978160805291211101010103[details]
Brandts, J., Korotov, S., & Křížek, M. (2011). Generalization of the Zlámal condition for simplical finite elements in Rd. Applications of Mathematics, 56(4), 417-424. https://doi.org/10.1007/s10492-011-0024-1[details]
2010
Brandts, J. H., & Reis da Silva, R. (2010). Computable eigenvalue bounds for rank-k perturbations. Linear Algebra and Its Applications, 432(12), 3100-3116. https://doi.org/10.1016/j.laa.2010.02.010[details]
Křížek, M., & Brandts, J. (2010). Manifestations of dark energy in the dynamics of the Solar system. Proceedings of the International Astronomical Union, 5(S264), 410-412. https://doi.org/10.1017/S1743921309993012[details]
2009
Brandts, J. H. (2009). Analysis of a non-standard mixed finite element method with applications to superconvergence. Applications of Mathematics, 54(3), 225-235. https://doi.org/10.1007/s10492-009-0014-8[details]
Brandts, J., Korotov, S., & Křížek, M. (2009). On the equivalence of ball conditions for simplicial finite elements in R-d. Applied Mathematics Letters, 22(8), 1210-1212. https://doi.org/10.1016/j.aml.2009.01.031[details]
Brandts, J. H., Korotov, S., & Křížek, M. (2008). The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem. Linear Algebra and Its Applications, 429(10), 2344-2357. https://doi.org/10.1016/j.laa.2008.06.011[details]
Brandts, J., & Křížek, M. (2008). Jaká matematika se ukrývá v internetovém vyhledávači Google? In Matematika a současná společnost: Sborník příspěvků vědeckého symposia (pp. 41-50). Tribun EU. [details]
Brandts, J., Korotov, S., & Krizek, M. (2008). On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Computers & Mathematics with Applications, 55(10), 2227-2233. https://doi.org/10.1016/j.camwa.2007.11.010[details]
Brandts, J., Chleboun, J., Korotov, S., Segeth, K., Šístek, J., & Vejchodský, T. (2012). Proceedings of the International Conference Applications of Mathematics 2012: in honor of the 60th birthday of Michal Křížek. Institute of Mathematics, Academy of Sciences of the Czech Republic. http://www.math.cas.cz/~am2012/proceedings.html[details]
Brandts, J. (2009). [Review of: R. Vandebril, M. Van Barel (2008) Matrix computations and semiseparable matrices. Vol. 1: Linear systems]. Applications of Mathematics, 54(3), 296-296. https://doi.org/10.1007/s10492-009-0019-3[details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.