For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Ellis-Monaghan, J., & Jonoska, N. (2023). From Molecules to Mathematics. In N. Jonoska, & E. Winfree (Eds.), Visions of DNA Nanotechnology at 40 for the Next 40: A Tribute to Nadrian C. Seeman (pp. 189-206). (Natural Computing Series). Springer. https://doi.org/10.1007/978-981-19-9891-1_11[details]
Abrams, L., & Ellis-Monaghan, J. A. (2022). New dualities from old: Generating geometric, Petrie, and Wilson dualities and trialities of ribbon graphs. Combinatorics Probability and Computing, 31(4), 574-597. https://doi.org/10.1017/S096354832100047X[details]
Ellingham, M. N., & Ellis-Monaghan, J. A. (2022). A Catalog of Enumeration Formulas for Bouquet and Dipole Embeddings under Symmetries. Symmetry, 14(9), Article 1793. https://doi.org/10.3390/sym14091793[details]
Ellis-Monaghan, J. A., & Moffatt, I. (2022). Graph theory. In J. A. Ellis-Monaghan, & I. Moffatt (Eds.), Handbook of the Tutte Polynomial and Related Topics (pp. 3-13). CRC Press. https://doi.org/10.1201/9780429161612-1[details]
Ellis-Monaghan, J. A., & Moffatt, I. (2022). Skein polynomials and the tutte polynomial when x = y. In J. A. Ellis-Monaghan, & I. Moffatt (Eds.), Handbook of the Tutte Polynomial and Related Topics (pp. 266-283). CRC Press. https://doi.org/10.1201/9780429161612-13[details]
Ellis-Monaghan, J. A., & Moffatt, I. (2022). The Tutte polynomial for graphs. In J. A. Ellis-Monaghan, & I. Moffatt (Eds.), Handbook of the Tutte Polynomial and Related Topics (pp. 14-26). CRC Press. https://doi.org/10.1201/9780429161612-2[details]
Ellis-Monaghan, J. A., Goodall, A. J., Moffatt, I., Noble, S. D., & Vena, L. (2022). Irreducibility of the Tutte polynomial of an embedded graph. Algebraic Combinatorics, 5(6), 1337-1351. https://doi.org/10.5802/alco.252[details]
Morse, A., Adkisson, W., Greene, J., Perry, D., Smith, B., Ellis-Monaghan, J., & Pangborn, G. (2020). DNA origami and unknotted A-trails in torus graphs. Journal of Knot Theory and its Ramifications, 29(7), Article 2050041. https://doi.org/10.1142/S0218216520500418
2019
Ellingham, M. N., & Ellis-Monaghan, J. A. (2019). Edge-outer graph embedding and the complexity of the DNA reporter strand problem. Theoretical Computer Science, 785, 117-127. https://doi.org/10.1016/j.tcs.2019.03.019
2018
Ellis Monaghan, J. A., Kung, J. P. S., & Moffatt, I. (2018). Preface: Special issue on the Tutte polynomial. Advances in Applied Mathematics, 94, 1-2. https://doi.org/10.1016/j.aam.2017.09.005
Ellis-Monaghan, J., Jonoska, N., & Pangborn, G. (2018). Tile-Based DNA Nanostructures: Mathematical Design and Problem Encoding. In Algebraic and Combinatorial Computational Biology (pp. 35-60). Elsevier. https://doi.org/10.1016/B978-0-12-814066-6.00002-7
Ferrari, M. M., Cook, A., Houlihan, A., Rouleau, R., Seeman, N. C., Pangborn, G., & Ellis-Monaghan, J. (2018). Design formalism for DNA self-assembly of polyhedral skeletons using rigid tiles. Journal of Mathematical Chemistry, 56(5), 1365-1392. https://doi.org/10.1007/s10910-018-0858-9
2017
Ellis-Monaghan, J. A., Pangborn, G., Seeman, N. C., Blakeley, S., Disher, C., Falcigno, M., Healy, B., Morse, A., Singh, B., & Westland, M. (2017). Design tools for reporter strands and DNA origami scaffold strands. Theoretical Computer Science, 671, 69-78. https://doi.org/10.1016/j.tcs.2016.10.007
2015
Ellis-Monaghan, J. A., & Moffatt, I. (2015). The Las Vergnas polynomial for embedded graphs. European Journal of Combinatorics, 50, 97-114. https://doi.org/10.1016/j.ejc.2015.03.009
Ellis-Monaghan, J. A., McDowell, A., Moffatt, I., & Pangborn, G. (2015). DNA origami and the complexity of Eulerian circuits with turning costs. Natural Computing, 14(3), 491-503. https://doi.org/10.1007/s11047-014-9457-2
Ellis-Monaghan, J., & Moffatt, I. (2015). Evaluations of topological tutte polynomials. Combinatorics Probability and Computing, 24(3), 556-583. https://doi.org/10.1017/S0963548314000571
2014
Ellis-Monaghan, J. A., & Moffatt, I. (2014). A note on recognizing an old friend in a new place: List coloring and the zero-temperature potts model. Annales de l'Institut Henri Poincare (D) Combinatorics, Physics and their Interactions, 1(4), 429-442. https://doi.org/10.4171/AIHPD/12
Ellis-Monaghan, J., Pangborn, G., Beaudin, L., Miller, D., Bruno, N., & Hashimoto, A. (2014). Minimal tile and bond-edge types for self-assembling DNA graphs. In N. Jonoska, & M. Saito (Eds.), Discrete and Topological Models in Molecular Biology (pp. 241-270). (Natural Computing Series; Vol. 48). Springer. https://doi.org/10.1007/978-3-642-40193-0_11
2013
Ellis-Monaghan, J. A., & Moffatt, I. (2013). A Penrose polynomial for embedded graphs. European Journal of Combinatorics, 34(2), 424-445. https://doi.org/10.1016/j.ejc.2012.06.009
Ellis-Monaghan, J., & Pangborn, G. (2013). An example of practical organization for undergraduate research experiences. PRIMUS, 23(9), 805-814. https://doi.org/10.1080/10511970.2012.758680
2012
Ellis-Monaghan, J. A., & Moffatt, I. (2012). Twisted duality for embedded graphs. Transactions of the American Mathematical Society, 364(3), 1529-1569. https://doi.org/10.1090/S0002-9947-2011-05529-7
2011
Ellis-Monaghan, J. A., & Merino, C. (2011). Graph polynomials and their applications I: The tutte polynomial. In Structural Analysis of Complex Networks (pp. 219-255). Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4789-6_9
Ellis-Monaghan, J. A., & Merino, C. (2011). Graph polynomials and their applications II: Interrelations and interpretations. In Structural Analysis of Complex Networks (pp. 257-292). Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4789-6_10
Ellis-Monaghan, J. A., & Moffatt, I. (2011). The Tutte-Potts connection in the presence of an external magnetic field. Advances in Applied Mathematics, 47(4), 772-782. https://doi.org/10.1016/j.aam.2011.02.004
Ellis-Monaghan, J. A., & Sarmiento, I. (2011). A recipe theorem for the topological Tutte polynomial of Bollobás and Riordan. European Journal of Combinatorics, 32(6), 782-794. https://doi.org/10.1016/j.ejc.2011.01.019
Ellis-Monaghan, J., & Pangborn, G. (2011). Using DNA self-assembly design strategies to motivate graph theory concepts. Mathematical Modelling of Natural Phenomena, 6(6), 96-107. https://doi.org/10.1051/mmnp/20116606
2010
Beaudin, L., Ellis-Monaghan, J., Pangborn, G., & Shrock, R. (2010). A little statistical mechanics for the graph theorist. Discrete mathematics, 310(13-14), 2037-2053. https://doi.org/10.1016/j.disc.2010.03.011
Cox, M. A., Hughes, T. S., Ellis-Monaghan, J. A., & Mondanaro, K. R. (2008). Hydrocarbon links in an octet truss. Journal of Mathematical Chemistry, 43(2), 874-891. https://doi.org/10.1007/s10910-007-9323-x
Dean, A. M., Ellis-Monaghan, J. A., Hamilton, S., & Pangborn, G. (2008). Unit rectangle visibility graphs. Electronic Journal of Combinatorics, 15(1), Article R79. https://doi.org/10.37236/803
2007
Archdeacon, D., Bonnington, C. P., & Ellis-Monaghan, J. A. (2007). How to exhibit toroidal maps in space. Discrete and Computational Geometry, 38(3), 573-594. https://doi.org/10.1007/s00454-007-1354-3
Ellis-Monaghan, J. A., & Sarmiento, I. (2007). Distance hereditary graphs and the interlace polynomial. Combinatorics Probability and Computing, 16(6), 947-973. https://doi.org/10.1017/S0963548307008723
2006
Ashline, G., & Ellis-Monaghan, J. (2006). How high? How fast? How long? Modeling water rocket flight with calculus. PRIMUS, 16(2), 121-137. https://doi.org/10.1080/10511970608984140
Ellis-Monaghan, J. A., & Traldi, L. (2006). Parametrized Tutte polynomials of graphs and matroids. Combinatorics Probability and Computing, 15(6), 835-854. https://doi.org/10.1017/S0963548306007656
Ellis-Monaghan, J. A., Pike, D. A., & Zor, Y. (2006). Decycling of Fibonacci cubes. Australasian Journal of Combinatorics, 35, 31-40.
2004
Archdeacon, D., Ellis-Monaghan, J., Fisher, D., Froncek, D., Lam, P. C. B., Seager, S., Wei, B., & Yuster, R. (2004). Some remarks on domination. Journal of Graph Theory, 46(3), 207-210. https://doi.org/10.1002/jgt.20000
Ashline, G., & Ellis-Monaghan, J. (2004). The lottery: A dream come true or a tax on people who are bad at math? PRIMUS, 14(4), 303-314. https://doi.org/10.1080/10511970408984095
Ellis-Monaghan, J. A. (2004). Identities for circuit partition polynomials, with applications to the Tutte polynomial. Advances in Applied Mathematics, 32(1-2), 188-197. https://doi.org/10.1016/S0196-8858(03)00079-4
2001
Ashline, G., & Ellis-Monaghan, J. (2001). Home sweet home: A financial incentive for the lower level mathematics course. PRIMUS, 11(1), 16-26. https://doi.org/10.1080/10511970108965976
1999
Ashline, G., & Ellis-Monaghan, J. (1999). Interdisciplinary population projects in a first semester calculus course. PRIMUS, 9(1), 39-55. https://doi.org/10.1080/10511979908965915
1998
Ellis-Monaghan, J. A. (1998). New Results for the Martin Polynomial. Journal of Combinatorial Theory. Series B, 74(2), 326-352. https://doi.org/10.1006/jctb.1998.1853
Ellis-Monaghan, J. (editor) (2021-2025). Annales de l'Institut Henri Poincaré D (Journal).
Others
Ellis-Monaghan, J. (organiser) (20-6-2021 - 26-6-2021). European Congress of Mathematics (organising a conference, workshop, ...). https://www.8ecm.si/
Ellis-Monaghan, J. (organiser) (2020 - 2025). Dutch Combinatorics Network (organising a conference, workshop, ...).
2022
Stroh, F. J. M. (2022). Hamilton cycles and algorithms. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.