For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Helminck, G. F., & Weenink, J. A. (2023). Scaling Invariance of the k[S]-Hierarchy and Its Strict Version. Lobachevskii Journal of Mathematics, 44(9), 3927-3940. https://doi.org/10.1134/S199508022309010X[details]
Helminck, G. F., & Panasenko, E. A. (2020). Reductions of the strict KP hierarchy. Theoretical and Mathematical Physics(Russian Federation), 205(2), 1411-1425. https://doi.org/10.1134/S0040577920110021[details]
Helminck, G. F., & Weenink, J. A. (2020). Integrable hierarchies in the N×N-matrices related to powers of the shift operator. Journal of Geometry and Physics, 148, Article 103560. https://doi.org/10.1016/j.geomphys.2019.103560[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2020). Extensions of the discrete KP hierarchy and its strict version. Theoretical and Mathematical Physics(Russian Federation), 204(3), 1140-1153. https://doi.org/10.1134/S0040577920090044[details]
2019
Helminck, G. F. (2019). A Geometric Construction of Solutions of the Strict h-Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 200(1), 985-1005. https://doi.org/10.1134/S0040577919070043[details]
Helminck, G. F., & Panasenko, E. A. (2019). Expressions in Fredholm Determinants for Solutions of the Strict KP Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 199(2), 637-651. https://doi.org/10.1134/S0040577919050027[details]
Helminck, G. F., & Panasenko, E. A. (2019). Geometric Solutions of the Strict KP Hierarchy. Theoretical and Mathematical Physics(Russian Federation), 198(1), 48-68. https://doi.org/10.1134/S0040577919010045[details]
Helminck, G. F., & Twilt, F. (2019). Newton flows for elliptic functions III & IV: Pseudo Newton graphs: bifurcation and creation of flows. European Journal of Mathematics, 5(4), 1364-1395. https://doi.org/10.1007/s40879-018-0289-y[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2019). Strict Versions of Integrable Hierarchies in Pseudodifference Operators and the Related Cauchy Problems. Theoretical and Mathematical Physics(Russian Federation), 198(2), 197-214. https://doi.org/10.1134/S004057791902003X[details]
2018
Helminck, G. F., & Twilt, F. (2018). Newton flows for elliptic functions I Structural stability: characterization & genericity. Complex Variables and Elliptic Equations, 63(6), 815-835. https://doi.org/10.1080/17476933.2017.1350853[details]
Helminck, G. F., Poberezhny, V. A., & Polenkova, S. V. (2018). A geometric construction of solutions of the strict dKP(Λ0) hierarchy. Journal of Geometry and Physics, 131, 189-203. https://doi.org/10.1016/j.geomphys.2018.05.015[details]
2017
Helminck, G. F. (2017). An integrable hierarchy including the AKNS hierarchy and its strict version. Theoretical and Mathematical Physics(Russian Federation), 192(3), 1324-1336. https://doi.org/10.1134/S0040577917090045[details]
Helminck, G. F., & Twilt, F. (2017). Newton flows for elliptic functions II: Structural stability: classification and representation. European Journal of Mathematics, 3(3), 691-727. https://doi.org/10.1007/s40879-017-0146-4[details]
Helminck, G. F. (2016). The Strict AKNS Hierarchy: Its Structure and Solutions. Advances in Mathematical Physics, 2016, Article 3649205. https://doi.org/10.1155/2016/3649205[details]
Helminck, G. F., Panasenko, E. A., & Polenkova, S. V. (2015). Bilinear equations for the strict KP hierarchy. Theoretical and Mathematical Physics, 185(3), 1803-1815. https://doi.org/10.1007/s11232-015-0380-1[details]
2014
Helminck, G. F., & Helminck, A. G. (2014). Infinite dimensional symmetric spaces and Lax equations compatible with the infinite Toda chain. Journal of Geometry and Physics, 85, 60-74. https://doi.org/10.1016/j.geomphys.2014.05.023[details]
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2014). Cauchy problems related to integrable deformations of pseudo differential operators. Journal of Geometry and Physics, 85, 196-205. https://doi.org/10.1016/j.geomphys.2014.05.004[details]
2013
Helminck, G. F., Helminck, A. G., & Panasenko, E. A. (2013). Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective. Theoretical and Mathematical Physics, 174(1), 134-153. https://doi.org/10.1007/s11232-013-0011-7[details]
2012
Helminck, G. F., & Opimakh, A. V. (2012). The zero curvature form of integrable hierarchies in the Z x Z-matrices. Algebra Colloquium, 19(2), 237-262. https://doi.org/10.1142/S1005386712000168[details]
Helminck, G. F., Panasenko, E. A., & Sergeeva, A. O. (2012). A formal infinite dimensional Cauchy problem and its relation to integrable hierarchies. In M. L. Ge, C. Bai, & N. Jing (Eds.), Quantized Algebra and Physics: Proceedings of the International Workshop on Quantizided Algebra and Physics, Tianjin, China, 23 - 26 July 2009 (pp. 89-108). World Scientific. https://doi.org/10.1142/9789814340458_0005[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2011). Reprint of: equivalent forms of multi component Toda hierarchies. Journal of Geometry and Physics, 61(9), 1755-1781. https://doi.org/10.1016/j.geomphys.2011.06.012[details]
2010
Helminck, G. F., & Panasenko, E. A. (2010). An algebraic characterization of the bilinear relations of the matrix hierarchy associated with a commutative algebra of k×k-matrices. Acta Applicandae Mathematicae, 109(1), 45-59. https://doi.org/10.1007/s10440-009-9440-6[details]
Helminck, G. F., & Poberezhny, V. A. (2010). Moving poles of meromorphic linear systems on ℙ1(ℂ) in the complex plane. Theoretical and Mathematical Physics, 165(3), 1637-1649. https://doi.org/10.1007/s11232-010-0134-z[details]
Helminck, G. F., & Poberezhny, V. A. (2010). Подвижные полюсы мероморфных линейных систем на P1(C) в комплексной плоскости. Теоретическая и математическая физика, 165(3), 472-487. https://doi.org/10.4213/tmf6588[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies. Theoretical and Mathematical Physics, 165(3), 1610-1636. https://doi.org/10.1007/s11232-010-0133-0[details]
Helminck, G. F., Helminck, A. G., & Opimakh, A. V. (2010). Относительное расслоение реперов бесконечномерного многообразия флагов и решения интегрируемых иерархий. Теоретическая и математическая физика, 165(3), 440-471. http://mi.mathnet.ru/tmf6587[details]
2008
Helminck, G. F., & Opimakh, A. V. (2008). Composition series for representations of the generalized Lorentz group associated with a cone. Bulgarian Journal of Physics, 35, 335-351. [details]
Helminck, G. F., & Polenkova, S. V. (2008). An analytic framework for the two-dimensional infinite Toda hierarchy associated with a commutative algebra. Theoretical and Mathematical Physics, 155(1), 659-672. https://doi.org/10.1007/s11232-008-0055-2[details]
Twilt, F., Helminck, G. F., Snuverink, M., & van den Brug, L. (2008). Newton flows for elliptic functions: A pilot study. Optimization, 57(1), 113-134. https://doi.org/10.1080/02331930701778965[details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.