 Koornwinder, T. H. (2023). Charting the Askey scheme. II. The q-Zhedanov scheme. Indagationes Mathematicae, 34(2), 317-337. https://doi.org/10.1016/j.indag.2022.12.003 [details]
Koornwinder, T. H. (2023). Charting the Askey scheme. II. The q-Zhedanov scheme. Indagationes Mathematicae, 34(2), 317-337. https://doi.org/10.1016/j.indag.2022.12.003 [details] Koornwinder, T. H. (2023). Dual addition formulas: the case of continuous q-ultraspherical and q-Hermite polynomials. The Ramanujan Journal, 61(2), 425-444. https://doi.org/10.1007/s11139-021-00426-7 [details]
Koornwinder, T. H. (2023). Dual addition formulas: the case of continuous q-ultraspherical and q-Hermite polynomials. The Ramanujan Journal, 61(2), 425-444. https://doi.org/10.1007/s11139-021-00426-7 [details] Koornwinder, T. H. (2022). Charting the q-Askey scheme. In E. Koelink, S. Kolb, N. Reshetikhin, & B. Vlaar (Eds.), Hypergeometry, Integrability and Lie Theory: Virtual Conference Hypergeometry, Integrapbility and Lie Theory, December 7-11, 2020, Lorentz Center Leiden, The Netherlands (pp. 79-94). (Contemporary Mathematics; Vol. 780). American Mathematical Society. https://doi.org/10.48550/arXiv.2108.03858, https://doi.org/10.1090/conm/780/15688 [details]
Koornwinder, T. H. (2022). Charting the q-Askey scheme. In E. Koelink, S. Kolb, N. Reshetikhin, & B. Vlaar (Eds.), Hypergeometry, Integrability and Lie Theory: Virtual Conference Hypergeometry, Integrapbility and Lie Theory, December 7-11, 2020, Lorentz Center Leiden, The Netherlands (pp. 79-94). (Contemporary Mathematics; Vol. 780). American Mathematical Society. https://doi.org/10.48550/arXiv.2108.03858, https://doi.org/10.1090/conm/780/15688 [details] Disveld, N., Koornwinder, T. H., & Stokman, J. V. (2021). A nonsymmetric version of Okounkov’s BC-type interpolation Macdonald polynomials. Transformation Groups, 26(4), 1261-1292. https://doi.org/10.1007/S00031-021-09672-x [details]
Disveld, N., Koornwinder, T. H., & Stokman, J. V. (2021). A nonsymmetric version of Okounkov’s BC-type interpolation Macdonald polynomials. Transformation Groups, 26(4), 1261-1292. https://doi.org/10.1007/S00031-021-09672-x [details] Koornwinder, T. H., & Stokman, J. V. (2020). General overview of multivariable special functions. In T. H. Koornwinder, & J. V. Stokman (Eds.), Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable Special Functions (pp. 1-18). Cambridge University Press. https://doi.org/10.1017/9780511777165.002 [details]
Koornwinder, T. H., & Stokman, J. V. (2020). General overview of multivariable special functions. In T. H. Koornwinder, & J. V. Stokman (Eds.), Encyclopedia of special functions : the Askey-Bateman project. - Volume 2: Multivariable Special Functions (pp. 1-18). Cambridge University Press. https://doi.org/10.1017/9780511777165.002 [details] Butzer, P. L., & Koornwinder, T. H. (2019). Josef Meixner: His life and his orthogonal polynomials. Indagationes Mathematicae, 30(1), 250-264. https://doi.org/10.1016/j.indag.2018.09.009 [details]
Butzer, P. L., & Koornwinder, T. H. (2019). Josef Meixner: His life and his orthogonal polynomials. Indagationes Mathematicae, 30(1), 250-264. https://doi.org/10.1016/j.indag.2018.09.009 [details] Diekema, E., & Koornwinder, T. H. (2019). Integral representations for Horn’s H2 function and Olsson’s Fp function. Kyushu Journal of Mathematics, 73(1), 1-24. https://doi.org/10.2206/kyushujm.73.1 [details]
Diekema, E., & Koornwinder, T. H. (2019). Integral representations for Horn’s H2 function and Olsson’s Fp function. Kyushu Journal of Mathematics, 73(1), 1-24. https://doi.org/10.2206/kyushujm.73.1 [details] Koornwinder, T. H. (2018). Dual addition formulas associated with dual product formulas. In M. Zuhair Nashed, & X. Li (Eds.), Frontiers In Orthogonal Polynomials and Q-series (pp. 373-392). (Contemporary Mathematics and Its Applications: Monographs, Expositions and Lecture Notes; Vol. 1). World Scientific. https://doi.org/10.1142/9789813228887_0019 [details]
Koornwinder, T. H. (2018). Dual addition formulas associated with dual product formulas. In M. Zuhair Nashed, & X. Li (Eds.), Frontiers In Orthogonal Polynomials and Q-series (pp. 373-392). (Contemporary Mathematics and Its Applications: Monographs, Expositions and Lecture Notes; Vol. 1). World Scientific. https://doi.org/10.1142/9789813228887_0019 [details] Koornwinder, T. H. (2018). Quadratic transformations for orthogonal polynomials in one and two variables. In H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, & Y. Yamada (Eds.), Representation Theory, Special Functions and Painlevé Equations — RIMS 2015 (pp. 419-447). (Advanced Studies in Pure Mathematics; Vol. 76). Mathematical society of Japan. https://doi.org/10.2969/aspm/07610419 [details]
Koornwinder, T. H. (2018). Quadratic transformations for orthogonal polynomials in one and two variables. In H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, & Y. Yamada (Eds.), Representation Theory, Special Functions and Painlevé Equations — RIMS 2015 (pp. 419-447). (Advanced Studies in Pure Mathematics; Vol. 76). Mathematical society of Japan. https://doi.org/10.2969/aspm/07610419 [details] Koornwinder, T. H., & Mazzocco, M. (2018). Dualities in the q-Askey Scheme and Degenerate DAHA. Studies in Applied Mathematics, 141(4), 424-473. https://doi.org/10.1111/sapm.12229 [details]
Koornwinder, T. H., & Mazzocco, M. (2018). Dualities in the q-Askey Scheme and Degenerate DAHA. Studies in Applied Mathematics, 141(4), 424-473. https://doi.org/10.1111/sapm.12229 [details] Koornwinder, T., Kostenko, A., & Teschl, G. (2018). Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Advances in Mathematics, 333, 796-821. https://doi.org/10.1016/j.aim.2018.05.038 [details]
Koornwinder, T., Kostenko, A., & Teschl, G. (2018). Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Advances in Mathematics, 333, 796-821. https://doi.org/10.1016/j.aim.2018.05.038 [details] Cagliero, L., & Koornwinder, T. H. (2015). Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials. Journal of Approximation Theory, 193, 20-38. https://doi.org/10.1016/j.jat.2014.03.016 [details]
Cagliero, L., & Koornwinder, T. H. (2015). Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials. Journal of Approximation Theory, 193, 20-38. https://doi.org/10.1016/j.jat.2014.03.016 [details] Koornwinder, T. H. (2015). Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 11, Article 074. https://doi.org/10.3842/SIGMA.2015.074 [details]
Koornwinder, T. H. (2015). Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 11, Article 074. https://doi.org/10.3842/SIGMA.2015.074 [details] Koornwinder, T. H. (2015). Okounkov's BC-Type Interpolation Macdonald Polynomials and Their q=1 Limit. Séminaire Lotharingien de combinatoire, 72, B72a. http://www.mat.univie.ac.at/~slc/wpapers/s72koorn.html [details]
Koornwinder, T. H. (2015). Okounkov's BC-Type Interpolation Macdonald Polynomials and Their q=1 Limit. Séminaire Lotharingien de combinatoire, 72, B72a. http://www.mat.univie.ac.at/~slc/wpapers/s72koorn.html [details] Koornwinder, T. H., & Sauter, S. A. (2015). The intersection of bivariate orthogonal polynomials on triangle patches. Mathematics of Computation, 84(294), 1795-1812. https://doi.org/10.1090/S0025-5718-2014-02910-4 [details]
Koornwinder, T. H., & Sauter, S. A. (2015). The intersection of bivariate orthogonal polynomials on triangle patches. Mathematics of Computation, 84(294), 1795-1812. https://doi.org/10.1090/S0025-5718-2014-02910-4 [details] Koornwinder, T. H. (2014). On the equivalence of two fundamental theta identities. Analysis and Applications (Singapore), 12(6), 711-725. https://doi.org/10.1142/S0219530514500559 [details]
Koornwinder, T. H. (2014). On the equivalence of two fundamental theta identities. Analysis and Applications (Singapore), 12(6), 711-725. https://doi.org/10.1142/S0219530514500559 [details] Koornwinder, T. H., & Schlosser, M. J. (2013). On an identity by Chaundy and Bullard. II. More history. Indagationes Mathematicae, 24(1), 174-180. https://doi.org/10.1016/j.indag.2012.08.003 [details]
Koornwinder, T. H., & Schlosser, M. J. (2013). On an identity by Chaundy and Bullard. II. More history. Indagationes Mathematicae, 24(1), 174-180. https://doi.org/10.1016/j.indag.2012.08.003 [details] Rösler, M., Koornwinder, T., & Voit, M. (2013). Limit transition between hypergeometric functions of type BC and type A. Compositio Mathematica, 149(8), 1381-1400. https://doi.org/10.1112/S0010437X13007045 [details]
Rösler, M., Koornwinder, T., & Voit, M. (2013). Limit transition between hypergeometric functions of type BC and type A. Compositio Mathematica, 149(8), 1381-1400. https://doi.org/10.1112/S0010437X13007045 [details] Diekema, E., & Koornwinder, T. H. (2012). Differentiation by integration using orthogonal polynomials, a survey. Journal of Approximation Theory, 164(5), 637-667. https://doi.org/10.1016/j.jat.2012.01.003 [details]
Diekema, E., & Koornwinder, T. H. (2012). Differentiation by integration using orthogonal polynomials, a survey. Journal of Approximation Theory, 164(5), 637-667. https://doi.org/10.1016/j.jat.2012.01.003 [details] Diekema, E., & Koornwinder, T. H. (2012). Generalizations of an integral for Legendre polynomials by Persson and Strang. Journal of Mathematical Analysis and Applications, 388(1), 125-135. https://doi.org/10.1016/j.jmaa.2011.12.001 [details]
Diekema, E., & Koornwinder, T. H. (2012). Generalizations of an integral for Legendre polynomials by Persson and Strang. Journal of Mathematical Analysis and Applications, 388(1), 125-135. https://doi.org/10.1016/j.jmaa.2011.12.001 [details] Koornwinder, T. H. (2012). Askey-Wilson polynomial. Scholarpedia Journal, 7(7), 7761. https://doi.org/10.4249/scholarpedia.7761 [details]
Koornwinder, T. H. (2012). Askey-Wilson polynomial. Scholarpedia Journal, 7(7), 7761. https://doi.org/10.4249/scholarpedia.7761 [details] Koornwinder, T. H. (2011). On the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 7, Article 040. https://doi.org/10.3842/SIGMA.2011.040 [details]
Koornwinder, T. H. (2011). On the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 7, Article 040. https://doi.org/10.3842/SIGMA.2011.040 [details] Atakishiyeva, M. K., Atakishiyev, N. M., & Koornwinder, T. H. (2009). q-Extension of Mehta's eigenvectors of the finite Fourier transform for q, a root of unity. Journal of Physics. A, Mathematical and Theoretical, 42(45), 454004. https://doi.org/10.1088/1751-8113/42/45/454004 [details]
Atakishiyeva, M. K., Atakishiyev, N. M., & Koornwinder, T. H. (2009). q-Extension of Mehta's eigenvectors of the finite Fourier transform for q, a root of unity. Journal of Physics. A, Mathematical and Theoretical, 42(45), 454004. https://doi.org/10.1088/1751-8113/42/45/454004 [details] Koornwinder, T. H. (2009). The Askey scheme as a four-manifold with corners. The Ramanujan Journal, 20(3), 409-439. https://doi.org/10.1007/s11139-009-9208-7 [details]
Koornwinder, T. H. (2009). The Askey scheme as a four-manifold with corners. The Ramanujan Journal, 20(3), 409-439. https://doi.org/10.1007/s11139-009-9208-7 [details] Koornwinder, T. H. (2008). Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case. II: The spherical subalgebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 052. https://doi.org/10.3842/SIGMA.2008.052 [details]
Koornwinder, T. H. (2008). Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case. II: The spherical subalgebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 052. https://doi.org/10.3842/SIGMA.2008.052 [details] Koornwinder, T. H., & Schlosser, M. J. (2008). On an identity by Chaundy and Bullard. I. Indagationes Mathematicae, 19(2), 239-261. https://doi.org/10.1016/S0019-3577(08)80002-X [details]
Koornwinder, T. H., & Schlosser, M. J. (2008). On an identity by Chaundy and Bullard. I. Indagationes Mathematicae, 19(2), 239-261. https://doi.org/10.1016/S0019-3577(08)80002-X [details] Koornwinder, T. H., Van Assche, W., & Warnaar, O. (2015). A tribute to Dick Askey. Journal of Approximation Theory, 193, 1-3. https://doi.org/10.1016/j.jat.2015.03.001 [details]
Koornwinder, T. H., Van Assche, W., & Warnaar, O. (2015). A tribute to Dick Askey. Journal of Approximation Theory, 193, 1-3. https://doi.org/10.1016/j.jat.2015.03.001 [details] Koornwinder, T. H. (2013). Orthogonal Polynomials. In C. Schneider, & J. Blümlein (Eds.), Computer Algebra in Quantum Field Theory: integration, summation and special functions (pp. 145-170). (Texts & Monographs in Symbolic Computation). Springer. https://doi.org/10.1007/978-3-7091-1616-6_6 [details]
Koornwinder, T. H. (2013). Orthogonal Polynomials. In C. Schneider, & J. Blümlein (Eds.), Computer Algebra in Quantum Field Theory: integration, summation and special functions (pp. 145-170). (Texts & Monographs in Symbolic Computation). Springer. https://doi.org/10.1007/978-3-7091-1616-6_6 [details] Koornwinder, T., Braaksma, B., van Dijk, G., Dorlas, T., Faraut, J., van Hemmen, J. L., & Stegeman, J. (2012). In memoriam Erik G.F. Thomas (1939-2011): "A good definition is half the work". Nieuw Archief voor Wiskunde, 5/13(4), 281-286. http://www.nieuwarchief.nl/serie5/pdf/naw5-2012-13-4-281.pdf [details]
Koornwinder, T., Braaksma, B., van Dijk, G., Dorlas, T., Faraut, J., van Hemmen, J. L., & Stegeman, J. (2012). In memoriam Erik G.F. Thomas (1939-2011): "A good definition is half the work". Nieuw Archief voor Wiskunde, 5/13(4), 281-286. http://www.nieuwarchief.nl/serie5/pdf/naw5-2012-13-4-281.pdf [details]