 Bencs, F., Huijben, J., & Regts, G. (2024). Approximating the chromatic polynomial is as hard as computing it exactly. Computational Complexity, 33(1), Article 1. https://doi.org/10.1007/s00037-023-00247-8 [details]
Bencs, F., Huijben, J., & Regts, G. (2024). Approximating the chromatic polynomial is as hard as computing it exactly. Computational Complexity, 33(1), Article 1. https://doi.org/10.1007/s00037-023-00247-8 [details] Jenssen, M., Patel, V., & Regts, G. (2024). Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem. Journal of Combinatorial Theory. Series B, 169, 233-252. https://doi.org/10.1016/j.jctb.2024.06.005 [details]
Jenssen, M., Patel, V., & Regts, G. (2024). Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem. Journal of Combinatorial Theory. Series B, 169, 233-252. https://doi.org/10.1016/j.jctb.2024.06.005 [details] Patel, V., Regts, G., & Stam, A. (2024). A near-optimal zero-free disk for the Ising model. Combinatorial Theory, 4(2), Article 9. https://doi.org/10.5070/C64264237 [details]
Patel, V., Regts, G., & Stam, A. (2024). A near-optimal zero-free disk for the Ising model. Combinatorial Theory, 4(2), Article 9. https://doi.org/10.5070/C64264237 [details] de Boer, D., Buys, P., Guerini, L., Peters, H., & Regts, G. (2024). Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial. Mathematical Proceedings of the Cambridge Philosophical Society, 176(2), 459-494. https://doi.org/10.1017/S030500412300052X [details]
de Boer, D., Buys, P., Guerini, L., Peters, H., & Regts, G. (2024). Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial. Mathematical Proceedings of the Cambridge Philosophical Society, 176(2), 459-494. https://doi.org/10.1017/S030500412300052X [details] Bencs, F., de Boer, D., Buys, P., & Regts, G. (2023). Uniqueness of the Gibbs Measure for the Anti-ferromagnetic Potts Model on the Infinite Δ-Regular Tree for Large Δ. Journal of Statistical Physics, 190, Article 140. https://doi.org/10.1007/s10955-023-03145-z [details]
Bencs, F., de Boer, D., Buys, P., & Regts, G. (2023). Uniqueness of the Gibbs Measure for the Anti-ferromagnetic Potts Model on the Infinite Δ-Regular Tree for Large Δ. Journal of Statistical Physics, 190, Article 140. https://doi.org/10.1007/s10955-023-03145-z [details] Huijben, J., Patel, V., & Regts, G. (2023). Sampling from the low temperature Potts model through a Markov chain on flows. Random Structures and Algorithms, 62(1), 219-239. https://doi.org/10.1002/rsa.21089 [details]
Huijben, J., Patel, V., & Regts, G. (2023). Sampling from the low temperature Potts model through a Markov chain on flows. Random Structures and Algorithms, 62(1), 219-239. https://doi.org/10.1002/rsa.21089 [details] Regts, G. (2023). Absence of zeros implies strong spatial mixing. Probability Theory and Related Fields, 186(1-2), 621-641. https://doi.org/10.1007/s00440-023-01190-z [details]
Regts, G. (2023). Absence of zeros implies strong spatial mixing. Probability Theory and Related Fields, 186(1-2), 621-641. https://doi.org/10.1007/s00440-023-01190-z [details] Regts, G., Huijben, J., & Bencs, F. (2023). On the location of chromatic zeros of series-parallel graphs. The Electronic Journal of Combinatorics, 30(3), Article P3.2. https://doi.org/10.37236/11204 [details]
Regts, G., Huijben, J., & Bencs, F. (2023). On the location of chromatic zeros of series-parallel graphs. The Electronic Journal of Combinatorics, 30(3), Article P3.2. https://doi.org/10.37236/11204 [details] de Boer, D., Buys, P., & Regts, G. (2023). Uniqueness of the Gibbs measure for the 4-state anti-ferromagnetic Potts model on the regular tree. Combinatorics Probability and Computing, 32(1), 158-182. https://doi.org/10.1017/S0963548322000207 [details]
de Boer, D., Buys, P., & Regts, G. (2023). Uniqueness of the Gibbs measure for the 4-state anti-ferromagnetic Potts model on the regular tree. Combinatorics Probability and Computing, 32(1), 158-182. https://doi.org/10.1017/S0963548322000207 [details] Buys, P., Galanis, A., Patel, V., & Regts, G. (2022). Lee-Yang zeros and the complexity of the ferromagnetic Ising model on bounded-degree graphs. Forum of Mathematics, Sigma, 10, Article e7. https://doi.org/10.1017/fms.2022.4 [details]
Buys, P., Galanis, A., Patel, V., & Regts, G. (2022). Lee-Yang zeros and the complexity of the ferromagnetic Ising model on bounded-degree graphs. Forum of Mathematics, Sigma, 10, Article e7. https://doi.org/10.1017/fms.2022.4 [details] Bencs, F., Csikvári, P., & Regts, G. (2021). Some Applications of Wagner's Weighted Subgraph Counting Polynomial. The Electronic Journal of Combinatorics, 28(4), Article 4-14. https://doi.org/10.37236/10185 [details]
Bencs, F., Csikvári, P., & Regts, G. (2021). Some Applications of Wagner's Weighted Subgraph Counting Polynomial. The Electronic Journal of Combinatorics, 28(4), Article 4-14. https://doi.org/10.37236/10185 [details] Bencs, F., Davies, E., Patel, V., & Regts, G. (2021). On zero-free regions for the anti-ferromagnetic Potts model on bounded-degree graphs. Annales de l'Institut Henri Poincaré D, 8(3), 459-489. https://doi.org/10.4171/AIHPD/108 [details]
Bencs, F., Davies, E., Patel, V., & Regts, G. (2021). On zero-free regions for the anti-ferromagnetic Potts model on bounded-degree graphs. Annales de l'Institut Henri Poincaré D, 8(3), 459-489. https://doi.org/10.4171/AIHPD/108 [details] Buys, P., Galanis, A., Patel, V. S., & Regts, G. (2021). Lee-yang zeros and the complexity of the ferromagnetic ising model on bounded-degree graphs. In D. Marx (Ed.), Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms: SODA '21 (pp. 1508-1519). Society for Industrial and Applied Mathematics Publications. https://doi.org/10.48550/arXiv.2006.14828, https://doi.org/10.1137/1.9781611976465.91 [details]
Buys, P., Galanis, A., Patel, V. S., & Regts, G. (2021). Lee-yang zeros and the complexity of the ferromagnetic ising model on bounded-degree graphs. In D. Marx (Ed.), Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms: SODA '21 (pp. 1508-1519). Society for Industrial and Applied Mathematics Publications. https://doi.org/10.48550/arXiv.2006.14828, https://doi.org/10.1137/1.9781611976465.91 [details] Regts, G., & Sevenster, B. (2021). Mixed partition functions and exponentially bounded edge-connection rank. Annales de l'Institut Henri Poincaré D, 8(2), 179-200. https://doi.org/10.4171/AIHPD/100 [details]
Regts, G., & Sevenster, B. (2021). Mixed partition functions and exponentially bounded edge-connection rank. Annales de l'Institut Henri Poincaré D, 8(2), 179-200. https://doi.org/10.4171/AIHPD/100 [details] Goodall, A., Litjens, B., Regts, G., & Vena, L. (2020). A Tutte polynomial for maps II: The non-orientable case. European Journal of Combinatorics, 86, Article 103095. https://doi.org/10.1016/j.ejc.2020.103095 [details]
Goodall, A., Litjens, B., Regts, G., & Vena, L. (2020). A Tutte polynomial for maps II: The non-orientable case. European Journal of Combinatorics, 86, Article 103095. https://doi.org/10.1016/j.ejc.2020.103095 [details] Helmuth, T., Perkins, W., & Regts, G. (2020). Algorithmic Pirogov–Sinai theory. Probability Theory and Related Fields, 176(3-4), 851-895. https://doi.org/10.1007/s00440-019-00928-y [details]
Helmuth, T., Perkins, W., & Regts, G. (2020). Algorithmic Pirogov–Sinai theory. Probability Theory and Related Fields, 176(3-4), 851-895. https://doi.org/10.1007/s00440-019-00928-y [details] Peters, H., & Regts, G. (2020). Location of zeros for the partition function of the Ising model on bounded degree graphs. Journal of the London Mathematical Society, 101(2), 765-785. https://doi.org/10.1112/jlms.12286 [details]
Peters, H., & Regts, G. (2020). Location of zeros for the partition function of the Ising model on bounded degree graphs. Journal of the London Mathematical Society, 101(2), 765-785. https://doi.org/10.1112/jlms.12286 [details] Kang, R. J., Patel, V., & Regts, G. (2019). Discrepancy and large dense monochromatic subsets. Journal of Algebraic Combinatorics, 10(1), 87-109. https://doi.org/10.4310/JOC.2019.v10.n1.a4 [details]
Kang, R. J., Patel, V., & Regts, G. (2019). Discrepancy and large dense monochromatic subsets. Journal of Algebraic Combinatorics, 10(1), 87-109. https://doi.org/10.4310/JOC.2019.v10.n1.a4 [details] Patel, V., & Regts, G. (2019). Computing the Number of Induced Copies of a Fixed Graph in a Bounded Degree Graph. Algorithmica, 81(5), 1844–1858. https://doi.org/10.1007/s00453-018-0511-9 [details]
Patel, V., & Regts, G. (2019). Computing the Number of Induced Copies of a Fixed Graph in a Bounded Degree Graph. Algorithmica, 81(5), 1844–1858. https://doi.org/10.1007/s00453-018-0511-9 [details] Regts, G., Schrijver, A., & Sevenster, B. (2016). On partition functions for 3-graphs. Journal of Combinatorial Theory Series B, 121, 421–431. https://doi.org/10.1016/j.jctb.2016.07.012 [details]
Regts, G., Schrijver, A., & Sevenster, B. (2016). On partition functions for 3-graphs. Journal of Combinatorial Theory Series B, 121, 421–431. https://doi.org/10.1016/j.jctb.2016.07.012 [details] Kang, R. J., Pach, J., Patel, V., & Regts, G. (2015). A Precise Threshold for Quasi-Ramsey Numbers. SIAM Journal on Discrete Mathematics, 29(3), 1670-1682. https://doi.org/10.1137/14097313X [details]
Kang, R. J., Pach, J., Patel, V., & Regts, G. (2015). A Precise Threshold for Quasi-Ramsey Numbers. SIAM Journal on Discrete Mathematics, 29(3), 1670-1682. https://doi.org/10.1137/14097313X [details] Patel, V., & Regts, G. (2022). Approximate counting using Taylor’s theorem: a survey. Bulletin of the EATC, (138). http://bulletin.eatcs.org/index.php/beatcs/article/view/725 [details]
Patel, V., & Regts, G. (2022). Approximate counting using Taylor’s theorem: a survey. Bulletin of the EATC, (138). http://bulletin.eatcs.org/index.php/beatcs/article/view/725 [details] Coulson, M., Davies, E., Kolla, A., Patel, V., & Regts, G. (2020). Statistical physics approaches to Unique Games. In S. Saraf (Ed.), 35th Computational Complexity Conference: CCC 2020, July 28–31, 2020, Saarbrücken, Germany (Virtual Conference) Article 13 (Leibniz International Proceedings in Informatics; Vol. 169). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CCC.2020.13 [details]
Coulson, M., Davies, E., Kolla, A., Patel, V., & Regts, G. (2020). Statistical physics approaches to Unique Games. In S. Saraf (Ed.), 35th Computational Complexity Conference: CCC 2020, July 28–31, 2020, Saarbrücken, Germany (Virtual Conference) Article 13 (Leibniz International Proceedings in Informatics; Vol. 169). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CCC.2020.13 [details] van der Aalst, T., Denteneer, D., Döring, H., Duong, M. H., Kang, R. J., Keane, M., Kool, J., Kryven, I., Meyfroyt, T., Müller, T., Regts, G., & Tomczyk, J. (2013). The random disc thrower problem. In M. Heydenreich, S. Hille, V. Rottschäfer, F. Spieksma, & E. Verbitskiy (Eds.), Proceedings of the 90th European Study Group Mathematics with Industry: SWI 2013: Leiden, 28 Janurary - 1 February 2013 (pp. 59-78). Universiteit Leiden, Studiegroep Wiskunde met de Industrie. http://websites.math.leidenuniv.nl/SWI-2013/SWI-2013_Scientific_proceedings_final.pdf [details]
van der Aalst, T., Denteneer, D., Döring, H., Duong, M. H., Kang, R. J., Keane, M., Kool, J., Kryven, I., Meyfroyt, T., Müller, T., Regts, G., & Tomczyk, J. (2013). The random disc thrower problem. In M. Heydenreich, S. Hille, V. Rottschäfer, F. Spieksma, & E. Verbitskiy (Eds.), Proceedings of the 90th European Study Group Mathematics with Industry: SWI 2013: Leiden, 28 Janurary - 1 February 2013 (pp. 59-78). Universiteit Leiden, Studiegroep Wiskunde met de Industrie. http://websites.math.leidenuniv.nl/SWI-2013/SWI-2013_Scientific_proceedings_final.pdf [details] Huijben, J. (2023). Chromatic polynomials: Zeros, algorithms and computational complexity. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Huijben, J. (2023). Chromatic polynomials: Zeros, algorithms and computational complexity. [Thesis, fully internal, Universiteit van Amsterdam]. [details] de Boer, D. (2023). The Potts model and the independence polynomial: Uniqueness of the Gibbs measure and distributions of complex zeros. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
de Boer, D. (2023). The Potts model and the independence polynomial: Uniqueness of the Gibbs measure and distributions of complex zeros. [Thesis, fully internal, Universiteit van Amsterdam]. [details]