For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Vink, M., & Sjerps, M. J. (2023). A collection of idioms for modeling activity level evaluations in forensic science. Forensic Science International: Synergy, 6, Article 100331. https://doi.org/10.1016/j.fsisyn.2023.100331[details]
Vergeer, P., Alberink, I., Sjerps, M., & Ypma, R. (2020). Why calibrating LR-systems is best practice. A reaction to “The evaluation of evidence for microspectrophotometry data using functional data analysis”, in FSI 305. Forensic Science International, 314, Article 110388. https://doi.org/10.1016/j.forsciint.2020.110388[details]
de Koeijer, J. A., Sjerps, M. J., Vergeer, P., & Berger, C. E. H. (2020). Combining evidence in complex cases: a practical approach to interdisciplinary casework. Science and Justice, 60(1), 20-29. https://doi.org/10.1016/j.scijus.2019.09.001[details]
Zuidberg, M., Bettman, M., Aarts, L. H. J., Sjerps, M., & Kokshoorn, B. (2019). Targeting relevant sampling areas for human biological traces: Where to sample displaced bodies for offender DNA? Science and Justice, 59(2), 153-161. https://doi.org/10.1016/j.scijus.2018.10.002[details]
2018
Sampat, A. A. S., van Daelen, B., Lopatka, M., Mol, H., van der Weg, G., Vivó-Truyols , G., Sjerps, M., Schoenmakers, P. J., & van Asten, A. C. (2018). Detection and Characterization of Ignitable Liquid Residues in Forensic Fire Debris Samples by Comprehensive Two-Dimensional Gas Chromatography. Separations, 5(3), Article 43. Advance online publication. https://doi.org/10.3390/separations5030043[details]
de Zoete, J., & Sjerps, M. (2018). Combining multiple pieces of evidence using a lower bound for the LR. Law, probability and risk, 17(2), 163-178. https://doi.org/10.1093/lpr/mgy006[details]
2017
Alberink, I., Bolck, A., Sjerps, M., & Vergeer, P. (2017). Comment to “A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation”. Forensic Science International, 276, 154. https://doi.org/10.1016/j.forsciint.2017.03.011[details]
Leegwater, A. J., Meuwly, D., Sjerps, M. J., Vergeer, P., & Alberink, I. (2017). Performance Study of a Score-based Likelihood Ratio System for Forensic Fingermark Comparison. Journal of Forensic Sciences, 62(3), 626-640. https://doi.org/10.1111/1556-4029.13339[details]
Lopatka, M., Sampat, A. A., Jonkers, S., Adutwum, L. A., Mol, H. G. J., van der Weg, G., Harynuk, J. J., Schoenmakers, P. J., van Asten, A., Sjerps, M. J., & Vivó-Truyols, G. (2017). Local Ion Signatures (LIS) for the examination of comprehensive two-dimensional gas chromatography applied to fire debris analysis. Forensic Chemistry, 3, 1-13. Advance online publication. https://doi.org/10.1016/j.forc.2016.10.003[details]
Lopatka, M., Barcaru, A., Sjerps, M. J., & Vivó-Truyols, G. (2016). Leveraging probabilistic peak detection to estimate baseline drift in complex chromatographic samples. Journal of Chromatography A, 1431, 122-130. https://doi.org/10.1016/j.chroma.2015.12.063[details]
Sampat, A., Lopatka, M., Sjerps, M., Vivo-Truyols, G., Schoenmakers, P., & van Asten, A. (2016). Forensic potential of comprehensive two-dimensional gas chromatography. Trends in Analytical Chemistry, 80, 345-363. Advance online publication. https://doi.org/10.1016/j.trac.2015.10.011[details]
Sjerps, M. J., Alberink, I., Bolck, A., Stoel, R. D., Vergeer, P., & van Zanten, J. H. (2016). Uncertainty and LR: to integrate or not to integrate, that’s the question. Law, probability and risk, 15(1), 23-29. Advance online publication. https://doi.org/10.1093/lpr/mgv005[details]
de Rijke, E., Schoorl, J. C., Cerli, C., Vonhof, H. B., Verdegaal, S. J. A., Vivó-Truyols, G., Lopatka, M., Dekter, R., Bakker, D., Sjerps, M. J., Ebskamp, M., & de Koster, C. G. (2016). The use of δ2H and δ18O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers. Food Chemistry, 204, 122-128. Advance online publication. https://doi.org/10.1016/j.foodchem.2016.01.134[details]
de Zoete, J., Curran, J., & Sjerps, M. (2016). A probabilistic approach for the interpretation of RNA profiles as cell type evidence. Forensic Science International. Genetics, 20, 30-44. https://doi.org/10.1016/j.fsigen.2015.09.007[details]
2015
Lopatka, M., Sigman, M. E., Sjerps, M. J., Williams, M. R., & Vivó-Truyols, G. (2015). Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis. Forensic Science International, 252, 177-186. https://doi.org/10.1016/j.forsciint.2015.04.035[details]
de Zoete, J., Curran, J., & Sjerps, M. (2015). Categorical methods for the interpretation of RNA profiles as cell type evidence and their limitations. Forensic Science International. Genetics Supplement Series, 5, e305-e307. https://doi.org/10.1016/j.fsigss.2015.09.121[details]
Kloosterman, A., Sjerps, M., & Quak, A. (2014). Error rates in forensic DNA analysis: Definition, numbers, impact and communication. Forensic Science International. Genetics, 12, 77-85. https://doi.org/10.1016/j.fsigen.2014.04.014[details]
Lopatka, M., Vivó-Truyols, G., & Sjerps, M. J. (2014). Probabilistic peak detection for first-order chromatographic data. Analytica Chimica Acta, 817, 9-16. https://doi.org/10.1016/j.aca.2014.02.015[details]
de Zoete, J., Sjerps, M., Meester, R., & Cator, E. (2014). The combined evidential value of autosomal and Y-chromosomal DNA profiles obtained from the same sample. International Journal of Legal Medicine, 128(6), 897-904. https://doi.org/10.1007/s00414-014-0971-7[details]
de Zoete, J., Vriend, K., Dolman, M., Meester, R., & Sjerps, M. (2014). Het gebruik van schakelbewijs; juridische en kans-theoretische gezichtspunten. Expertise en Recht, 2014(5), 153-167. http://www.uitgeverijparis.nl/reader/195034/1001192606[details]
2013
Haraksim, R., Meuwly, D., Doekhie, G., Vergeer, P., & Sjerps, M. (2013). Assignment of the evidential value of a fingermark general pattern using a Bayesian network. In A. Brömme, & C. Busch (Eds.), BIOSIG 2013: proceedings of the 12th International Conference of the Biometrics Special Interest Group : 04.-06. September 2013 in Darmstadt, Germany (pp. 99-109). (GI-Edition : Lecture notes in informatics ; Vol. 212). Gesellschaft für Informatik. http://subs.emis.de/LNI/Proceedings/Proceedings212/P-212.pdf[details]
Berger, C. E. H., & Sjerps, M. J. (2012). Discussion paper: Reaction to Hamer and Thompson in LPR. Law, probability and risk, 11(4), 373-375. https://doi.org/10.1093/lpr/mgs024[details]
Sjerps, M. J., & Berger, C. E. H. (2012). How clear is transparent? Reporting expert reasoning in legal cases. Law, probability and risk, 11(4), 317-329. https://doi.org/10.1093/lpr/mgs017[details]
Stoel, R. D., & Sjerps, M. (2012). Interpretation of Forensic Evidence. In S. Roeser, R. Hillerbrand, P. Sandin, & M. Peterson (Eds.), Handbook of risk theory: epistemology, decision theory, ethics, and social implications of risk (pp. 135-158). Springer. https://doi.org/10.1007/978-94-007-1433-5[details]
2011
van der Beek, C. P., Kloosterman, A. D., & Sjerps, M. J. (2011). De detectie van vals positieve en de preventie van vals negatieve matches bij grootschalige DNA-databankvergelijkingen. Expertise en Recht, 2011(6), 219-221. http://www.uitgeverijparis.nl/reader/6084/5462[details]
2014
Harris, H. A., Sjerps, M. J., Kloosterman, A. D., Quak, A., & Geradts, Z. J. (2014). Framework for Registration, Classification, and evaluation of errors in the Forensic DNA Typing Process. Proceedings of the American Academy of Forensic Sciences, 20, 19. Article W13. http://www.aafs.org/sites/default/files/AAFS2014Proceedings.pdf[details]
Sjerps, M. J. (2011). [Review of: D.H. Kaye (2010) The double helix and the law of evidence]. Journal of the American Statistical Association, 106(494), 769. https://doi.org/10.1198/jasa.2011.br1106[details]
Sjerps, M., Kloosterman, A., & van der Beek, K. (2010). De interpretatie van een DNA-databankmatch. Delikt en Delinkwent, 40(2), 138-155. [details]
2016
Stols-Witlox, M. J. N., Sjerps, M. J., Hendriks, E., Wallert, A., van Tilborgh, J. L., de Zoete, J. C., & Hermens, E. (2016). Scientific Reasoning in Art: Evaluating Evidence in Paintings Research using a Bayesian Approach. Poster session presented at NICAS 2016 projects presentations, Amsterdam, Netherlands.
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.