For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Gugushvili, S., van der Meulen, F., Schauer, M., & Spreij, P. (2023). Nonparametric Bayesian volatility learning under microstructure noise. Japanese Journal of Statistics and Data Science, 6(1), 551-571. Advance online publication. https://doi.org/10.1007/s42081-022-00185-9[details]
2022
Belomestny, D., Gugushvili, S., Schauer, M., & Spreij, P. (2022). Nonparametric Bayesian volatility estimation for gamma-driven stochastic differential equations. Bernoulli, 28(4), 2151-2180. https://doi.org/10.3150/21-BEJ1413[details]
Delsing, G. A., Mandjes, M. R. H., Spreij, P. J. C., & Winands, E. M. M. (2022). On capital allocation for a risk measure derived from ruin theory. Insurance: Mathematics and Economics, 104, 76-98. https://doi.org/10.1016/j.insmatheco.2022.02.001[details]
Michielon, M., Khedher, A., & Spreij, P. (2022). Proxying credit curves via Wasserstein distances. Annals of Operations Research. Advance online publication. https://doi.org/10.1007/s10479-022-04552-3
2021
He, J., Khedher, A., & Spreij, P. J. C. (2021). A Kalman particle filter for online parameter estimation with applications to affine models. Statistical Inference for Stochastic Processes, 24(3), 353-403. https://doi.org/10.1007/s11203-021-09239-3[details]
Michielon, M., Khedher, A., & Spreij, P. (2021). Liquidity-free implied volatilities: an approach using conic finance. International Journal of Financial Engineering, 8(4), Article 2150041. Advance online publication. https://doi.org/10.1142/S2424786321500419[details]
Delsing, G. A., Mandjes, M. R. H., Spreij, P. J. C., & Winands, E. M. M. (2020). Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment. Methodology and Computing in Applied Probability, 22(3), 927-948. https://doi.org/10.1007/s11009-019-09742-4[details]
Gugushvili, S., van der Meulen, F., Schauer, M., & Spreij, P. (2020). Nonparametric bayesian estimation of a hölder continuous diffusion coefficient. Brazilian Journal of Probability and Statistics, 34(3), 537-559. https://doi.org/10.1214/19-BJPS433[details]
van Beek, M., Mandjes, M., Spreij, P., & Winands, E. (2020). Regime switching affine processes with applications to finance. Finance and Stochastics, 24(2), 309-333. https://doi.org/10.1007/s00780-020-00419-2[details]
Belomestny, D., Gugushvili, S., Schauer, M., & Spreij, P. (2019). Nonparametric Bayesian inference for Gamma-type Lévy subordinators. Communications in Mathematical Sciences, 17(3), 781-816. https://doi.org/10.4310/CMS.2019.v17.n3.a8[details]
Delsing, G. A., Mandjes, M. R. H., Spreij, P. J. C., & Winands, E. M. M. (2019). An optimization approach to adaptive multi-dimensional capital management. Insurance: Mathematics and Economics, 84, 87-97. https://doi.org/10.1016/j.insmatheco.2018.10.001[details]
Gugushvili, S., Van der Meulen, F., Schauer, M., & Spreij, P. (2019). Bayesian wavelet de-noising with the caravan prior. ESAIM - Probability and Statistics, 23, 947-978. https://doi.org/10.1051/ps/2019019[details]
Gugushvili, S., van der Meulen, F., Schauer, M., & Spreij, P. (2019). Nonparametric Bayesian Volatility Estimation. In D. R. Wood, J. de Gier, C. E. Praeger, & T. Tao (Eds.), 2017 MATRIX Annals (pp. 279-302). (MATRIX Book Series; Vol. 2). Springer. https://doi.org/10.1007/978-3-030-04161-8_19[details]
Spreij, P., & Storm, J. (2019). Diffusion Limits for a Markov Modulated Binomial Counting Process. Probability in the Engineering and Informational Sciences, 1-23. Advance online publication. https://doi.org/10.1017/S0269964818000578
2018
Gugushvili, S., van der Meulen, F., & Spreij, P. (2018). A non-parametric Bayesian approach to decompounding from high frequency data. Statistical Inference for Stochastic Processes, 21(1), 53-79. https://doi.org/10.1007/s11203-016-9153-1[details]
Mandjes, M., & Spreij, P. (2017). A note on the central limit theorem for the idleness process in a one-sided reflected Ornstein–Uhlenbeck model. Statistica Neerlandica, 71(3), 225-235. https://doi.org/10.1111/stan.12108[details]
Gugushvili, S., & Spreij, P. (2016). Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation. ESAIM-Probability and Statistics, 20, 143-153. https://doi.org/10.1051/ps/2016008[details]
Huang, G., Jansen, H. M., Mandjes, M., Spreij, P., & De Turck, K. (2016). Markov-modulated Ornstein-Uhlenbeck processes. Advances in Applied Probability, 48(1), 235-254. https://doi.org/10.1017/apr.2015.15[details]
Huang, G., Mandjes, M., & Spreij, P. (2016). Large deviations for Markov-modulated diffusion processes with rapid switching. Stochastic Processes and their Applications, 126(6), 1785-1818. https://doi.org/10.1016/j.spa.2015.12.005[details]
Mandjes, M., & Spreij, P. (2016). Explicit Computations for Some Markov Modulated Counting Processes. In J. Kallsen, & A. Papapantoleon (Eds.), Advanced Modelling in Mathematical Finance: In Honour of Ernst Eberlein (pp. 63-89). (Springer Proceedings in Mathematics & Statistics; Vol. 189). Springer. https://doi.org/10.1007/978-3-319-45875-5_3[details]
2015
Finesso, L., & Spreij, P. (2015). Approximation of Nonnegative Systems by Finite Impulse Response Convolutions. IEEE Transactions on Information Theory, 61(8), 4399-4409. https://doi.org/10.1109/TIT.2015.2443786[details]
Gugushvili, S., van der Meulen, F., & Spreij, P. (2015). Nonparametric Bayesian inference for multidimensional compound Poisson processes. Modern Stochastics : Theory and Applications, 2(1), 1-15. https://doi.org/10.15559/15-VMSTA20[details]
Huang, G., Mandjes, M., & Spreij, P. (2014). Limit theorems for reflected Ornstein-Uhlenbeck processes. Statistica Neerlandica, 68(1), 25-42. https://doi.org/10.1111/stan.12021[details]
Huang, G., Mandjes, M., & Spreij, P. (2014). Weak convergence of Markov-modulated diffusion processes with rapid switching. Statistics & Probability Letters, 86, 74-79. https://doi.org/10.1016/j.spl.2013.12.013[details]
van Beek, M., Mandjes, M., Spreij, P., & Winands, E. (2014). Markov switching affine processes and applications to pricing. In M. Vanmaele, G. Deelstra, A. De Schepper, J. Dhaene, W. Schoutens, S. Vanduffel, & D. Vyncke (Eds.), Actuarial and Financial Mathematics Conference, Interplay between Finance and Insurance: February 6-7, 2014 (pp. 97-102). Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten. http://www.afmathconf.ugent.be/FormerEditions/Proceedings2014.pdf[details]
Klein, A., & Spreij, P. J. C. (2012). Transformed statistical distance measures and the fisher information matrix. Linear Algebra and Its Applications, 437(2), 692-712. https://doi.org/10.1016/j.laa.2012.03.002[details]
Gugushvili, S., van Es, B., & Spreij, P. (2011). Deconvolution for an atomic distribution: rates of convergence. Journal of Nonparametric Statistics, 23(4), 1003-1029. https://doi.org/10.1080/10485252.2011.576763[details]
Leijdekker, V. J. G., Mandjes, M. R. H., & Spreij, P. J. C. (2011). Sample-path large deviations in credit risk. Journal of applied mathematics, 2011. https://doi.org/10.1155/2011/354171[details]
Leijdekker, V., & Spreij, P. (2011). Explicit computations for a filtering problem with point process observations with applications to credit risk. Probability in the Engineering and Informational Sciences, 25(3), 393-418. https://doi.org/10.1017/S0269964811000076[details]
Spreij, P., Veerman, E., & Vlaar, P. (2011). An affine two-factor heteroskedastic macro-finance term structure model. Applied Mathematical Finance, 18(4), 331-352. https://doi.org/10.1080/1350486X.2010.517664[details]
van Es, B., & Spreij, P. (2011). Estimation of a multivariate stochastic volatility density by kernel deconvolution. Journal of Multivariate Analysis, 102(3), 683-697. https://doi.org/10.1016/j.jmva.2010.12.003[details]
van Es, B., Spreij, P., & van Zanten, H. (2011). Nonparametric methods for volatility density estimation. In G. di Nunno, & B. Øksendal (Eds.), Advanced Mathematical Methods for Finance (pp. 293-312). (Springer for Research & Development). Springer. http://rd.springer.com/chapter/10.1007/978-3-642-18412-3_11[details]
2010
Finesso, L., Grassi, A., & Spreij, P. (2010). Approximation of stationary processes by hidden Markov models. Mathematics of control, signals, and systems, 22(1), 1-22. https://doi.org/10.1007/s00498-010-0050-7[details]
Finesso, L., Grassi, A., & Spreij, P. (2010). Two-step nonnegative matrix factorization algorithm for the approximate realization of hidden Markov models. In A. Edelmayer (Ed.), Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), Budapest, Hungary (pp. 369-374). Eötvös Loránd University. http://arxiv.org/abs/1007.3435[details]
Klein, A., & Spreij, P. (2010). Tensor Sylvester matrices and the Fisher information matrix of VARMAX processes. Linear Algebra and Its Applications, 432(8), 1975-1989. https://doi.org/10.1016/j.laa.2009.06.027[details]
2009
Klein, A., & Spreij, P. (2009). Matrix differential calculus applied to multiple stationary time series and an extended Whittle formula for information matrices. Linear Algebra and Its Applications, 430(2-3), 674-691. https://doi.org/10.1016/j.laa.2008.09.019[details]
Finesso, L., Grassi, A., & Spreij, P. (2008). Approximation of the I-divergence between stationary and hidden Markov processes. In Proceedings of the 2008 International Workshop on Applied Probability (IWAP 2008) Université de Technologie de Compiègne. http://staff.science.uva.nl/~spreij/hmmIWAP2008.pdf[details]
van Es, B., Gugushvili, S., & Spreij, P. (2008). Deconvolution for an atomic distribution. Electronic Journal of Statistics, 2, 265-297. https://doi.org/10.1214/07-EJS121[details]
Gugushvili, S., van der Meulen, F., Schauer, M., & Spreij, P. (2020). Fast and scalable non-parametric Bayesian inference for Poisson point processes. Researchers.One. https://researchers.one/articles/19.06.00001[details]
The UvA uses cookies to ensure the basic functionality of the site and for statistical and optimisation purposes. Cookies are also placed to display third-party content and for marketing purposes. Click 'Accept all cookies' to consent to the placement of all cookies, or choose 'Decline' to only accept functional and analytical cookies. Also read the UvA Privacy statement.