For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Dahmen, W., Monsuur, H., & Stevenson, R. (2023). Least squares solvers for ill-posed PDEs that are conditionally stable. ESAIM: Mathematical Modelling and Numerical Analysis, 57(4), 2227-2255. https://doi.org/10.1051/M2AN/2023050[details]
Monsuur, H., & Stevenson, R. (2023). A pollution-free ultra-weak FOSLS discretization of the Helmholtz equation. Computers & Mathematics with Applications, 148, 241-255. https://doi.org/10.1016/J.CAMWA.2023.08.013[details]
Dahmen, W., Stevenson, R., & Westerdiep, J. (2022). Accuracy controlled data assimilation for parabolic problems. Mathematics of Computation, 91(334), 557-595. Advance online publication. https://doi.org/10.1090/mcom/3680[details]
Stevenson, R., van Venetië, R., & Westerdiep, J. (2022). A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations. Advances in Computational Mathematics, 48(3), Article 17. https://doi.org/10.1007/s10444-022-09930-w[details]
Boehm, U., Cox, S., Gantner, G., & Stevenson, R. (2021). Fast solutions for the first-passage distribution of diffusion models with space-time-dependent drift functions and time-dependent boundaries. Journal of Mathematical Psychology, 105, Article 102613. https://doi.org/10.1016/j.jmp.2021.102613[details]
Carere, C., Strazzullo, M., Ballarin, F., Rozza, G., & Stevenson, R. P. (2021). A weighted POD-reduction approach for parametrized PDE-constrained Optimal Control Problems with random inputs and applications to environmental sciences. Computers & Mathematics with Applications, 102, 261-276. https://doi.org/10.1016/j.camwa.2021.10.020[details]
Gantner, G., & Stevenson, R. (2021). Further results on a space-time FOSLS formulation of parabolic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 55(1), 283-299. https://doi.org/10.1051/m2an/2020084[details]
Snijders, T. E., Schlösser, T. P. C., Heckmann, N. D., Tezuka, T., Castelein, R. M., Stevenson, R. P., Weinans, H., de Gast, A., & Dorr, L. D. (2021). The Effect of Functional Pelvic Tilt on the Three-Dimensional Acetabular Cup Orientation in Total Hip Arthroplasty Dislocations. Journal of Arthroplasty, 36(6), 2184-2188. https://doi.org/10.1016/j.arth.2020.12.055[details]
Snijders, T. E., Schlösser, T. P. C., van Stralen, M., Castelein, R. M., Stevenson, R. P., Weinans, H., & de Gast, A. (2021). The Effect of Postural Pelvic Dynamics on the Three-dimensional Orientation of the Acetabular Cup in THA Is Patient Specific. Clinical Orthopaedics and Related Research, 479(3), 561-571. https://doi.org/10.1097/CORR.0000000000001489[details]
Stevenson, R., & Van Venetië, R. (2021). Uniform preconditioners of linear complexity for problems of negative order. Computational methods in applied mathematics, 21(2), 469-478. https://doi.org/10.1515/cmam-2020-0052[details]
Stevenson, R., & Westerdiep, J. (2021). Stability of Galerkin discretizations of a mixed space–time variational formulation of parabolic evolution equations. IMA Journal of Numerical Analysis, 41(1), 28-47. Advance online publication. https://doi.org/10.1093/imanum/drz069[details]
Stevenson, R., & van Venetië, R. (2020). Uniform preconditioners for problems of negative order. Mathematics of Computation, 89(322), 645-674. https://doi.org/10.1090/MCOM/3481[details]
Stevenson, R., & van Venetië, R. (2020). Uniform preconditioners for problems of positive order. Computers and Mathematics with Applications, 79(12), 3516-3530. https://doi.org/10.1016/j.camwa.2020.02.009[details]
Berrone, S., Bonito, A., Stevenson, R., & Verani, M. (2019). An optimal adaptive fictitious domain method. Mathematics of Computation, 88(319), 2101-2134. https://doi.org/10.1090/mcom/3414[details]
Canuto, C., Nochetto, R. H., Stevenson, R. P., & Verani, M. (2019). A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square. ESAIM: Mathematical Modelling and Numerical Analysis, 53(3), 987-1003. https://doi.org/10.1051/m2an/2019015[details]
Dahmen, W., & Stevenson, R. P. (2019). Adaptive Strategies for Transport Equations. Computational methods in applied mathematics, 19(3), 431-464. https://doi.org/10.1515/cmam-2018-0230[details]
Rekatsinas, N., & Stevenson, R. P. (2019). An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems. Advances in Computational Mathematics, 45(2), 1031–1066. https://doi.org/10.1007/s10444-018-9644-2[details]
Broersen, D., Dahmen, W., & Stevenson, R. P. (2018). On the stability of DPG formulations of transport equations. Mathematics of Computation, 87(311), 1051-1082. https://doi.org/10.1090/mcom/3242[details]
Chegini, N., & Stevenson, R. (2018). Adaptive piecewise tensor product wavelets scheme for Laplace-interface problems. Journal of Computational and Applied Mathematics, 336, 72-97. https://doi.org/10.1016/j.cam.2017.12.021[details]
Rekatsinas, N., & Stevenson, R. (2018). A quadratic finite element wavelet Riesz basis. International Journal of Wavelets, Multiresolution and Information Processing, 16(4), Article 1850033. https://doi.org/10.1142/S0219691318500339[details]
Rekatsinas, N., & Stevenson, R. (2018). An optimal adaptive wavelet method for first order system least squares. Numerische Mathematik, 140(1), 191-237. https://doi.org/10.1007/s00211-018-0961-7[details]
Canuto, C., Nochetto, R. H., Stevenson, R., & Verani, M. (2017). On p-robust saturation for hp-AFEM. Computers and Mathematics with Applications, 73(9), 2004-2022. https://doi.org/10.1016/j.camwa.2017.02.035[details]
Schwab, C., & Stevenson, R. (2017). Fractional space-time variational formulations of (Navier-) stokes equations. SIAM Journal on Mathematical Analysis, 49(4), 2442-2467. https://doi.org/10.1137/15M1051725[details]
2016
Canuto, C., Nochetto, R. H., Stevenson, R. P., & Verani, M. (2016). Adaptive Spectral Galerkin Methods with Dynamic Marking. SIAM journal on numerical analysis, 54(6), 3193–3213. https://doi.org/10.1137/15M104579X[details]
Dahlke, S., Lellek, D., Lui, S. H., & Stevenson, R. (2016). Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation. Numerical Functional Analysis and Optimization, 37(10), 1213-1234 . https://doi.org/10.1080/01630563.2016.1198916[details]
Diening, L., Kreuzer, C., & Stevenson, R. (2016). Instance Optimality of the Adaptive Maximum Strategy. Foundations of Computational Mathematics, 16(1), 33-68. https://doi.org/10.1007/s10208-014-9236-6[details]
Broersen, D., & Stevenson, R. P. (2015). A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form. IMA Journal of Numerical Analysis, 35(1), 39-73. https://doi.org/10.1093/imanum/dru003[details]
Canuto, C., Nochetto, R. H., Stevenson, R., & Verani, M. (2015). High-Order Adaptive Galerkin Methods. In R. M. Kirby, M. Berzins, & J. S. Hesthaven (Eds.), Spectral and High Order Methods for Partial Differential Equations : ICOSAHOM 2014: selected papers from the ICOSAHOM conference, June 23-27, 2014, Salt Lake City, Utah, USA (pp. 51-72). (Lecture Notes in Computational Science and Engineering ; Vol. 106). Springer. https://doi.org/10.1007/978-3-319-19800-2_4[details]
Chegini, N., & Stevenson, R. (2015). An Adaptive Wavelet Method for Semi-Linear First-Order System Least Squares. Computational methods in applied mathematics, 15(4), 439-463. https://doi.org/10.1515/cmam-2015-0023[details]
2014
Broersen, D., & Stevenson, R. (2014). A robust Petrov-Galerkin discretisation of convection-diffusions. Computers & Mathematics with Applications, 68(11), 1605-1618. https://doi.org/10.1016/j.camwa.2014.06.019[details]
Chegini, N. G., Dahlke, S., Friedrich, U., & Stevenson, R. (2014). Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates. In S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, & H. Yserentant (Eds.), Extraction of quantifiable information from complex systems (pp. 69-81). (Lecture Notes in Computational Science and Engineering; No. 102). Springer. https://doi.org/10.1007/978-3-319-08159-5_4[details]
Gallistl, D., Schedensack, M., & Stevenson, R. P. (2014). A Remark on Newest Vertex Bisection in Any Space Dimension. Computational methods in applied mathematics, 14(3), 317-320. https://doi.org/10.1515/cmam-2014-0013[details]
Guberovic, R., Schwab, C., & Stevenson, R. (2014). Space-time variational saddle point formulations of Stokes and Navier-Stokes equations. ESAIM : Mathematical Modelling and Numerical Analysis, 48(3), 875-894. https://doi.org/10.1051/m2an/2013124[details]
Kestler, S., & Stevenson, R. (2014). Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions. Journal of Computational and Applied Mathematics, 260, 103-116. https://doi.org/10.1016/j.cam.2013.09.015[details]
Stevenson, R. (2014). Adaptive Wavelet Methods for Linear and Nonlinear Least-Squares Problems. Foundations of Computational Mathematics, 14(2), 237-283. https://doi.org/10.1007/s10208-013-9184-6[details]
Stevenson, R. P. (2014). First-order system least squares with inhomogeneous boundary conditions. IMA Journal of Numerical Analysis, 34(3), 863-878. Advance online publication. https://doi.org/10.1093/imanum/drt042[details]
2013
Chegini, N., Dahlke, S., Friedrich, U., & Stevenson, R. (2013). Piecewise tensor product wavelet bases by extensions and approximation rates. Mathematics of Computation, 82(284), 2157-2190. https://doi.org/10.1090/S0025-5718-2013-02694-4[details]
Kestler, S., & Stevenson, R. (2013). An Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method. Journal of Scientific Computing, 57(3), 439-463. https://doi.org/10.1007/s10915-013-9712-1[details]
2012
Chegini, N., & Stevenson, R. (2012). The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems. IMA Journal of Numerical Analysis, 32(1), 75-104. https://doi.org/10.1093/imanum/drr013[details]
2011
Chegini, N., & Stevenson, R. (2011). Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results. SIAM journal on numerical analysis, 49(1), 182-212. https://doi.org/10.1137/100800555[details]
Demlow, A., & Stevenson, R. (2011). Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors. Numerische Mathematik, 117(2), 185-218. https://doi.org/10.1007/s00211-010-0349-9[details]
Schwab, C., & Stevenson, R. (2011). Fast evaluation of nonlinear functionals of tensor product wavelet expansions. Numerische Mathematik, 119(4), 765-786. https://doi.org/10.1007/s00211-011-0397-9[details]
Stevenson, R. (2011). Divergence-free wavelet bases on the hypercube: free-slip boundary conditions, and applications for solving the instationary Stokes equations. Mathematics of Computation, 80(275), 1499-1523. https://doi.org/10.1090/S0025-5718-2011-02471-3[details]
Dijkema, T. J., Schwab, C., & Stevenson, R. (2009). An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constructive Approximation, 30(3), 423-455. https://doi.org/10.1007/s00365-009-9064-0[details]
Mommer, M. S., & Stevenson, R. (2009). A goal-oriented adaptive finite element method with convergence rates. SIAM journal on numerical analysis, 47(2), 861-868. https://doi.org/10.1137/060675666[details]
Nguyen, H., & Stevenson, R. (2009). Finite element wavelets with improved quantitative properties. Journal of Computational and Applied Mathematics, 230(2), 706-727. https://doi.org/10.1016/j.cam.2009.01.007[details]
Stevenson, R. (2009). Adaptive wavelet methods for solving operator equations: An overview. In R. A. DeVore, & A. Kunoth (Eds.), Multiscale, nonlinear and adaptive approximation: Dedicated to Wolfgang Dahmen on the occasion of his 60th birthday (pp. 543-597). Springer. https://doi.org/10.1007/978-3-642-03413-8_13[details]
Stevenson, R., & Werner, M. (2009). A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems. Mathematics of Computation, 78(266), 619-644. https://doi.org/10.1090/S0025-5718-08-02186-8[details]
Kondratyuk, Y., & Stevenson, R. (2008). An optimal adaptive finite element method for the Stokes problem. SIAM journal on numerical analysis, 46(2), 747-775. https://doi.org/10.1137/06066566X[details]
Stevenson, R., & Werner, M. (2008). Computation of differential operators in aggregated wavelet frame coordinates. IMA Journal of Numerical Analysis, 28(2), 354-381. https://doi.org/10.1093/imanum/drm025[details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.