For best experience please turn on javascript and use a modern browser!

prof. dr. R.P. (Rob) Stevenson

Faculty of Science
Korteweg-de Vries Instituut
Photographer: Stevenson

Visiting address
  • Science Park 107
  • Room number: F3.46
Postal address
  • Postbus 94248
    1090 GE Amsterdam
  • Publications


    • Rekatsinas, N., & Stevenson, R. P. (2019). An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems. Advances in Computational Mathematics. DOI: 10.1007/s10444-018-9644-2


    • Broersen, D., Dahmen, W., & Stevenson, R. P. (2018). On the stability of DPG formulations of transport equations. Mathematics of Computation, 87(311), 1051-1082. DOI: 10.1090/mcom/3242 [details]
    • Rekatsinas, N., & Stevenson, R. (2018). A quadratic finite element wavelet Riesz basis. International Journal of Wavelets, Multiresolution and Information Processing, 16(4), [1850033]. DOI: 10.1142/S0219691318500339 [details]
    • Rekatsinas, N., & Stevenson, R. (2018). An optimal adaptive wavelet method for first order system least squares. Numerische Mathematik, 140(1), 191-237. DOI: 10.1007/s00211-018-0961-7 [details]
    • Chegini, N., & Stevenson, R. (2018). Adaptive piecewise tensor product wavelets scheme for Laplace-interface problems. Journal of Computational and Applied Mathematics, 336, 72-97. DOI: 10.1016/ [details]


    • Canuto, C., Nochetto, R. H., Stevenson, R., & Verani, M. (2017). On p-robust saturation for hp-AFEM. Computers and Mathematics with Applications, 73(9), 2004-2022. DOI: 10.1016/j.camwa.2017.02.035 [details]
    • Canuto, C., Nochetto, R. H., Stevenson, R., & Verani, M. (2017). Convergence and optimality of hp-AFEM. Numerische Mathematik, 135(4), 1073-1119. DOI: 10.1007/s00211-016-0826-x [details]
    • Schwab, C., & Stevenson, R. (2017). Fractional space-time variational formulations of (Navier-) stokes equations. SIAM Journal on Mathematical Analysis, 49(4), 2442-2467. DOI: 10.1137/15M1051725


    • Stevenson, R. (2016). Divergence-Free Wavelets on the Hypercube: General Boundary Conditions. Constructive Approximation, 44(2), 233-267. DOI: 10.1007/s00365-016-9325-7 [details]
    • Canuto, C., Nochetto, R. H., Stevenson, R. P., & Verani, M. (2016). Adaptive Spectral Galerkin Methods with Dynamic Marking. SIAM journal on numerical analysis, 54(6), 3193–3213. DOI: 10.1137/15M104579X
    • Dahlke, S., Lellek, D., Lui, S. H., & Stevenson, R. (2016). Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation. Numerical Functional Analysis and Optimization, 37(10), 1213-1234 . DOI: 10.1080/01630563.2016.1198916
    • Diening, L., Kreuzer, C., & Stevenson, R. (2016). Instance Optimality of the Adaptive Maximum Strategy. Foundations of Computational Mathematics, 16(1), 33-68. DOI: 10.1007/s10208-014-9236-6 [details]


    • Broersen, D., & Stevenson, R. P. (2015). A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form. IMA Journal of Numerical Analysis, 35(1), 39-73. DOI: 10.1093/imanum/dru003 [details]
    • Chegini, N., & Stevenson, R. (2015). An Adaptive Wavelet Method for Semi-Linear First-Order System Least Squares. Computational methods in applied mathematics, 15(4), 439-463. DOI: 10.1515/cmam-2015-0023 [details]
    • Canuto, C., Nochetto, R. H., Stevenson, R., & Verani, M. (2015). High-Order Adaptive Galerkin Methods. In R. M. Kirby, M. Berzins, & J. S. Hesthaven (Eds.), Spectral and High Order Methods for Partial Differential Equations : ICOSAHOM 2014: selected papers from the ICOSAHOM conference, June 23-27, 2014, Salt Lake City, Utah, USA (pp. 51-72). (Lecture Notes in Computational Science and Engineering ; Vol. 106). Cham: Springer. DOI: 10.1007/978-3-319-19800-2_4 [details]


    • Broersen, D., & Stevenson, R. (2014). A robust Petrov-Galerkin discretisation of convection-diffusions. Computers & Mathematics with Applications, 68(11), 1605-1618. DOI: 10.1016/j.camwa.2014.06.019 [details]
    • Chegini, N. G., Dahlke, S., Friedrich, U., & Stevenson, R. (2014). Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates. In S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, ... H. Yserentant (Eds.), Extraction of quantifiable information from complex systems (pp. 69-81). (Lecture Notes in Computational Science and Engineering; No. 102). Cham: Springer. DOI: 10.1007/978-3-319-08159-5_4 [details]
    • Kestler, S., & Stevenson, R. (2014). Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions. Journal of Computational and Applied Mathematics, 260, 103-116. DOI: 10.1016/ [details]
    • Stevenson, R. P. (2014). First-order system least squares with inhomogeneous boundary conditions. IMA Journal of Numerical Analysis, 34(3), 863-878. DOI: 10.1093/imanum/drt042 [details]
    • Stevenson, R. (2014). Adaptive Wavelet Methods for Linear and Nonlinear Least-Squares Problems. Foundations of Computational Mathematics, 14(2), 237-283. DOI: 10.1007/s10208-013-9184-6 [details]
    • Gallistl, D., Schedensack, M., & Stevenson, R. P. (2014). A Remark on Newest Vertex Bisection in Any Space Dimension. Computational methods in applied mathematics, 14(3), 317-320. DOI: 10.1515/cmam-2014-0013 [details]
    • Guberovic, R., Schwab, C., & Stevenson, R. (2014). Space-time variational saddle point formulations of Stokes and Navier-Stokes equations. ESAIM : Mathematical Modelling and Numerical Analysis, 48(3), 875-894. DOI: 10.1051/m2an/2013124 [details]


    • Chegini, N., Dahlke, S., Friedrich, U., & Stevenson, R. (2013). Piecewise tensor product wavelet bases by extensions and approximation rates. Mathematics of Computation, 82(284), 2157-2190. DOI: 10.1090/S0025-5718-2013-02694-4 [details]
    • Kestler, S., & Stevenson, R. (2013). An Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method. Journal of Scientific Computing, 57(3), 439-463. DOI: 10.1007/s10915-013-9712-1 [details]


    • Chegini, N., & Stevenson, R. (2012). The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems. IMA Journal of Numerical Analysis, 32(1), 75-104. DOI: 10.1093/imanum/drr013 [details]


    • Chegini, N., & Stevenson, R. (2011). Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results. SIAM journal on numerical analysis, 49(1), 182-212. DOI: 10.1137/100800555 [details]
    • Stevenson, R. (2011). Divergence-free wavelet bases on the hypercube: free-slip boundary conditions, and applications for solving the instationary Stokes equations. Mathematics of Computation, 80(275), 1499-1523. DOI: 10.1090/S0025-5718-2011-02471-3 [details]
    • Stevenson, R. (2011). Divergence-free wavelet bases on the hypercube. Applied and Computational Harmonic Analysis, 30(1), 1-19. DOI: 10.1016/j.acha.2010.01.007 [details]
    • Demlow, A., & Stevenson, R. (2011). Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors. Numerische Mathematik, 117(2), 185-218. DOI: 10.1007/s00211-010-0349-9 [details]
    • Schwab, C., & Stevenson, R. (2011). Fast evaluation of nonlinear functionals of tensor product wavelet expansions. Numerische Mathematik, 119(4), 765-786. DOI: 10.1007/s00211-011-0397-9 [details]



    • Dijkema, T. J., Schwab, C., & Stevenson, R. (2009). An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constructive Approximation, 30(3), 423-455. DOI: 10.1007/s00365-009-9064-0 [details]
    • Stevenson, R. (2009). Adaptive wavelet methods for solving operator equations: An overview. In R. A. DeVore, & A. Kunoth (Eds.), Multiscale, nonlinear and adaptive approximation: Dedicated to Wolfgang Dahmen on the occasion of his 60th birthday (pp. 543-597). Berlin: Springer. DOI: 10.1007/978-3-642-03413-8_13 [details]
    • Stevenson, R., & Werner, M. (2009). A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems. Mathematics of Computation, 78(266), 619-644. DOI: 10.1090/S0025-5718-08-02186-8 [details]
    • Mommer, M. S., & Stevenson, R. (2009). A goal-oriented adaptive finite element method with convergence rates. SIAM journal on numerical analysis, 47(2), 861-868. DOI: 10.1137/060675666 [details]
    • Nguyen, H., & Stevenson, R. (2009). Finite element wavelets with improved quantitative properties. Journal of Computational and Applied Mathematics, 230(2), 706-727. DOI: 10.1016/ [details]
    • Schwab, C., & Stevenson, R. (2009). Space-time adaptive wavelet methods for parabolic evolution problems. Mathematics of Computation, 78(267), 1293-1318. DOI: 10.1090/S0025-5718-08-02205-9 [details]



    • Stevenson, R. (2011). Multischaal methoden in de numerieke wiskunde. (oratiereeks). Amsterdam: Universiteit van Amsterdam. [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • No ancillary activities