For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Cheng, M. C. N., Duncan, J. F. R., & Mertens, M. H. (2023). Class numbers, cyclic simple groups, and arithmetic. Journal of the London Mathematical Society, 108(1), 238-272. https://doi.org/10.1112/jlms.12744[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R., & Cheng, M. C. N. (2023). Learning lattice quantum field theories with equivariant continuous flows. SciPost Physics, 15(6), Article 238. https://doi.org/10.21468/SciPostPhys.15.6.238[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. (18-1-2023). Data: Learning Lattice Quantum Field Theories with Equivariant Continuous Flows. Zenodo. https://doi.org/10.5281/zenodo.7547918
Anagiannis, V., Cheng, C. N., Duncan, J., & Volpato, R. (2021). Vertex operator superalgebra/sigma model correspondences: The four-torus case. Progress of Theoretical and Experimental Physics, 2021(8), Article 08B102. https://doi.org/10.1093/ptep/ptab095[details]
Anagiannis, V., Cheng, M. C. N., & Harrison, S. M. (2019). K3 Elliptic Genus and an Umbral Moonshine Module. Communications in Mathematical Physics, 366(2), 647-680. https://doi.org/10.1007/s00220-019-03314-w[details]
Cheng, M. C. N., & Duncan, J. F. R. (2019). Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules. Communications in Mathematical Physics, 370(3), 759-780. https://doi.org/10.1007/s00220-019-03540-2[details]
Cheng, M. C. N., Ferrari, F., & Sgroi, G. (2019). Three-manifold quantum invariants and mock theta functions. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 378(2163), Article 0439. https://doi.org/10.1098/rsta.2018.0439[details]
Cheng, M. C. N., de Lange, P., & Whalen, D. P. Z. (2019). Generalised umbral moonshine. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 15, Article 014. https://doi.org/10.3842/SIGMA.2019.014[details]
Cheng, M. CN., Chun, S., Ferrari, F., Gukov, S., & Harrison, S. M. (2019). 3d modularity. Journal of High Energy Physics, 2019(10), Article 10. https://doi.org/10.1007/JHEP10(2019)010[details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2018). Weight one Jacobi forms and umbral moonshine. Journal of Physics A: Mathematical and Theoretical, 51(10), Article 104002. https://doi.org/10.1088/1751-8121/aaa819[details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., Harvey, J. A., Kachru, S., & Rayhaun, B. C. (2018). Attractive strings and five-branes, skew-holomorphic Jacobi forms and moonshine. Journal of High Energy Physics, 2018(7), Article 130. https://doi.org/10.1007/JHEP07(2018)130[details]
Cheng, M. C. N., Harrison, S. M., Volpato, R., & Zimet, M. (2018). K3 string theory, lattices and moonshine. Research in Mathematical Sciences, 5(3), Article 32. https://doi.org/10.1007/s40687-018-0150-4[details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., & Kachru, S. (2017). Equivariant K3 invariants. Communications in Number Theory and Physics, 11(1), 41-72. https://doi.org/10.4310/CNTP.2017.v11.n1.a2[details]
Cheng, M. C. N., Ferrari, F., Harrison, S. M., & Paquette, N. M. (2017). Landau-Ginzburg orbifolds and symmetries of K3 CFTs. Journal of High Energy Physics, 2017(1), Article 46. https://doi.org/10.1007/JHEP01(2017)046[details]
Benjamin, N., Cheng, M. C. N., Kachru, S., Moore, G. W., & Paquette, N. M. (2016). Elliptic Genera and 3d Gravity. Annales Henri Poincaré, 17(10), 2623-2662. https://doi.org/10.1007/s00023-016-0469-6[details]
Cheng, M. C. N., Dong, X., Duncan, J. F. R., Harrison, S., Kachru, S., & Wrase, T. (2015). Mock modular Mathieu moonshine modules. Research in the Mathematical Sciences, 2(1), Article 13. Advance online publication. https://doi.org/10.1186/s40687-015-0034-9[details]
Cheng, M. C. N., & Duncan, J. F. R. (2014). Rademacher Sums and Rademacher Series. In W. Kohnen, & R. Weissauer (Eds.), Conformal Field Theory, Automorphic Forms and Related Topics : CFT 2011, Heidelberg, September 19-23, 2011 (pp. 143-182). (Contributions in Mathematical Contributions in Mathematical; No. 8). Springer. https://doi.org/10.1007/978-3-662-43831-2_6[details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2014). Umbral moonshine and the Niemeier lattices. Research in the Mathematical Sciences, 1, 3. https://doi.org/10.1186/2197-9847-1-3[details]
Aganagic, M., Cheng, M. C. N., Dijkgraaf, R., Kreft, D., & Vafa, C. (2012). Quantum Geometry of Refined Topological Strings. The Journal of High Energy Physics, 2012(11), Article 019. https://doi.org/10.1007/JHEP11(2012)019[details]
Cheng, M. C. N., Dijkgraaf, R., & Vafa, C. (2011). Non-perturbative topological strings and conformal blocks. The Journal of High Energy Physics, 2011(9), 022. Article 22. https://doi.org/10.1007/JHEP09(2011)022[details]
Cheng, M. C. N., & Verlinde, E. P. (2008). Wall crossing, discrete attractor flow and Borcherds algebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 068. https://doi.org/10.3842/SIGMA.2008.068[details]
Cheng, M. (organiser) & Gukov, S. (organiser) (8-3-2019 - 10-3-2019). Modularity and 3-manifolds, Providence. A long-standing problem in quantum topology is to find a function, more precisely a q-series with integer coefficients, such that its limiting values (…) (organising a conference, workshop, ...). https://icerm.brown.edu/events/ht19-2-m3m/#workshopoverview
2008
Cheng, M. C. N. (2008). The spectra of supersymmetric states in string theory. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. (18-1-2023). Data: Learning Lattice Quantum Field Theories with Equivariant Continuous Flows. Zenodo. https://doi.org/10.5281/zenodo.7547918
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.