Cheng, M. C. N., Chun, S., Feigin, B., Ferrari, F., Gukov, S., Harrison, S. M., & Passaro, D. (2024). 3-Manifolds and VOA Characters. Communications in Mathematical Physics, 405(2), Article 44. https://doi.org/10.1007/s00220-023-04889-1
Cheng, M. C. N., Coman, I., Passaro, D., & Sgroi, G. (2024). Quantum Modular ẐG-Invariants. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 20, Article 18. https://doi.org/10.3842/SIGMA.2024.018
2023
Cheng, M. C. N., Duncan, J. F. R., & Mertens, M. H. (2023). Class numbers, cyclic simple groups, and arithmetic. Journal of the London Mathematical Society, 108(1), 238-272. https://doi.org/10.1112/jlms.12744[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R., & Cheng, M. C. N. (2023). Learning lattice quantum field theories with equivariant continuous flows. SciPost Physics, 15(6), Article 238. https://doi.org/10.21468/SciPostPhys.15.6.238[details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. (18-1-2023). Data: Learning Lattice Quantum Field Theories with Equivariant Continuous Flows. Zenodo. https://doi.org/10.5281/zenodo.7547918
Anagiannis, V., Cheng, C. N., Duncan, J., & Volpato, R. (2021). Vertex operator superalgebra/sigma model correspondences: The four-torus case. Progress of Theoretical and Experimental Physics, 2021(8), Article 08B102. https://doi.org/10.1093/ptep/ptab095[details]
Anagiannis, V., Cheng, M. C. N., & Harrison, S. M. (2019). K3 Elliptic Genus and an Umbral Moonshine Module. Communications in Mathematical Physics, 366(2), 647-680. https://doi.org/10.1007/s00220-019-03314-w[details]
Cheng, M. C. N., & Duncan, J. F. R. (2019). Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules. Communications in Mathematical Physics, 370(3), 759-780. https://doi.org/10.1007/s00220-019-03540-2[details]
Cheng, M. C. N., Ferrari, F., & Sgroi, G. (2019). Three-manifold quantum invariants and mock theta functions. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 378(2163), Article 0439. https://doi.org/10.1098/rsta.2018.0439[details]
Cheng, M. C. N., de Lange, P., & Whalen, D. P. Z. (2019). Generalised umbral moonshine. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 15, Article 014. https://doi.org/10.3842/SIGMA.2019.014[details]
Cheng, M. CN., Chun, S., Ferrari, F., Gukov, S., & Harrison, S. M. (2019). 3d modularity. Journal of High Energy Physics, 2019(10), Article 10. https://doi.org/10.1007/JHEP10(2019)010[details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2018). Weight one Jacobi forms and umbral moonshine. Journal of Physics A: Mathematical and Theoretical, 51(10), Article 104002. https://doi.org/10.1088/1751-8121/aaa819[details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., Harvey, J. A., Kachru, S., & Rayhaun, B. C. (2018). Attractive strings and five-branes, skew-holomorphic Jacobi forms and moonshine. Journal of High Energy Physics, 2018(7), Article 130. https://doi.org/10.1007/JHEP07(2018)130[details]
Cheng, M. C. N., Harrison, S. M., Volpato, R., & Zimet, M. (2018). K3 string theory, lattices and moonshine. Research in Mathematical Sciences, 5(3), Article 32. https://doi.org/10.1007/s40687-018-0150-4[details]
Cheng, M. C. N., Duncan, J. F. R., Harrison, S. M., & Kachru, S. (2017). Equivariant K3 invariants. Communications in Number Theory and Physics, 11(1), 41-72. https://doi.org/10.4310/CNTP.2017.v11.n1.a2[details]
Cheng, M. C. N., Ferrari, F., Harrison, S. M., & Paquette, N. M. (2017). Landau-Ginzburg orbifolds and symmetries of K3 CFTs. Journal of High Energy Physics, 2017(1), Article 46. https://doi.org/10.1007/JHEP01(2017)046[details]
Benjamin, N., Cheng, M. C. N., Kachru, S., Moore, G. W., & Paquette, N. M. (2016). Elliptic Genera and 3d Gravity. Annales Henri Poincaré, 17(10), 2623-2662. https://doi.org/10.1007/s00023-016-0469-6[details]
Cheng, M. C. N., Dong, X., Duncan, J. F. R., Harrison, S., Kachru, S., & Wrase, T. (2015). Mock modular Mathieu moonshine modules. Research in the Mathematical Sciences, 2(1), Article 13. Advance online publication. https://doi.org/10.1186/s40687-015-0034-9[details]
Cheng, M. C. N., & Duncan, J. F. R. (2014). Rademacher Sums and Rademacher Series. In W. Kohnen, & R. Weissauer (Eds.), Conformal Field Theory, Automorphic Forms and Related Topics : CFT 2011, Heidelberg, September 19-23, 2011 (pp. 143-182). (Contributions in Mathematical Contributions in Mathematical; No. 8). Springer. https://doi.org/10.1007/978-3-662-43831-2_6[details]
Cheng, M. C. N., Duncan, J. F. R., & Harvey, J. A. (2014). Umbral moonshine and the Niemeier lattices. Research in the Mathematical Sciences, 1, 3. https://doi.org/10.1186/2197-9847-1-3[details]
Aganagic, M., Cheng, M. C. N., Dijkgraaf, R., Kreft, D., & Vafa, C. (2012). Quantum Geometry of Refined Topological Strings. The Journal of High Energy Physics, 2012(11), Article 019. https://doi.org/10.1007/JHEP11(2012)019[details]
Cheng, M. C. N., Dijkgraaf, R., & Vafa, C. (2011). Non-perturbative topological strings and conformal blocks. The Journal of High Energy Physics, 2011(9), 022. Article 22. https://doi.org/10.1007/JHEP09(2011)022[details]
Cheng, M. C. N., & Verlinde, E. P. (2008). Wall crossing, discrete attractor flow and Borcherds algebra. Symmetry, Integrability and Geometry : Methods and Applications (SIGMA), 4, Article 068. https://doi.org/10.3842/SIGMA.2008.068[details]
Cheng, M. (organiser) & Gukov, S. (organiser) (8-3-2019 - 10-3-2019). Modularity and 3-manifolds, Providence. A long-standing problem in quantum topology is to find a function, more precisely a q-series with integer coefficients, such that its limiting values (…) (organising a conference, workshop, ...). https://icerm.brown.edu/events/ht19-2-m3m/#workshopoverview
2008
Cheng, M. C. N. (2008). The spectra of supersymmetric states in string theory. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. N. (18-1-2023). Data: Learning Lattice Quantum Field Theories with Equivariant Continuous Flows. Zenodo. https://doi.org/10.5281/zenodo.7547918
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.