For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Fokkema, H. J., de Heide, R., & van Erven, T. A. L. (2023). Attribution-based Explanations that Provide Recourse cannot be Robust. Journal of Machine Learning Research, 1-37. Article 23-0042.
Sachs, S., Hadiji, H., van Erven, T., & Guzmán, C. (2022). Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022 (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation.
van der Hoeven, D., Hadiji, H., & van Erven, T. (2022). Distributed Online Learning for Joint Regret with Communication Constraints. Proceedings of Machine Learning Research, 167, 1003-1042. https://proceedings.mlr.press/v167/hoeven22a.html[details]
van Erven, T., Koolen, W. M., & van der Hoeven, D. (2021). MetaGrad: Adaptation using Multiple Learning Rates in Online Learning. Journal of Machine Learning Research, 22(161), 1-61. https://jmlr.org/papers/v22/20-1444.html[details]
van Erven, T., Sachs, S., Koolen, W. M., & Kotłowski, W. (2021). Robust Online Convex Optimization in the Presence of Outliers. Proceedings of Machine Learning Research, 134, 4174-4194. https://proceedings.mlr.press/v134/vanerven21a.html[details]
van Erven, T. A. L., Grünwald, P. D., & de Rooij, S. (2007). Catching Up Faster in Bayesian Model Selection and Model Averaging. In Advances in Neural Information Processing Systems (pp. 417-424). Neural Information Processing Systems (NIPS) Foundation. [details]
2024
Fokkema, H. J., Garreau, D., & van Erven, T. A. L. (2024). The Risks of Recourse in Binary Classification. 1-20. Paper presented at Conference on Artificial Intelligence & Statistics, Valencia, Spain.
2023
Sachs, S., van Erven, T., Hodgkinson, L., Khanna, R., & Şimşekli, U. (2023). Generalization Guarantees via Algorithm-dependent Rademacher Complexity. 4863-4880. Paper presented at 36th Annual Conference on Learning Theory, COLT 2023, Bangalore, India.
Others
van Erven, T. A. L. (other) (2007). Lecturer Machine Learning, Vrije Universiteit van Amsterdam (other).
2024
Sachs, S. (2024). Optimization, games and generalization bounds. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.