For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. T.A.L. (Tim) van Erven

Faculty of Science
KDV
Photographer: Bastiaan Heus

Visiting address
  • Science Park 107
Postal address
  • Postbus 94248
    1090 GE Amsterdam
Contact details
Social media
  • Publications

    2023

    • Fokkema, H. J., de Heide, R., & van Erven, T. A. L. (2023). Attribution-based Explanations that Provide Recourse cannot be Robust. Journal of Machine Learning Research, 1-37. Article 23-0042.

    2022

    • Mayo, J. J., Hadiji, H., & van Erven, T. (2022). Scale-free Unconstrained Online Learning for Curved Losses. Proceedings of Machine Learning Research, 178, 4464-4497. https://proceedings.mlr.press/v178/mayo22a.html [details]
    • Sachs, S., Hadiji, H., van Erven, T., & Guzmán, C. (2022). Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022 (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation.
    • van der Hoeven, D., Hadiji, H., & van Erven, T. (2022). Distributed Online Learning for Joint Regret with Communication Constraints. Proceedings of Machine Learning Research, 167, 1003-1042. https://proceedings.mlr.press/v167/hoeven22a.html [details]

    2021

    2007

    • van Erven, T. A. L., Grünwald, P. D., & de Rooij, S. (2007). Catching Up Faster in Bayesian Model Selection and Model Averaging. In Advances in Neural Information Processing Systems (pp. 417-424). Neural Information Processing Systems (NIPS) Foundation. [details]

    2024

    • Fokkema, H. J., Garreau, D., & van Erven, T. A. L. (2024). The Risks of Recourse in Binary Classification. 1-20. Paper presented at Conference on Artificial Intelligence & Statistics, Valencia, Spain.

    2023

    • Sachs, S., van Erven, T., Hodgkinson, L., Khanna, R., & Şimşekli, U. (2023). Generalization Guarantees via Algorithm-dependent Rademacher Complexity. 4863-4880. Paper presented at 36th Annual Conference on Learning Theory, COLT 2023, Bangalore, India.

    Others

    • van Erven, T. A. L. (other) (2007). Lecturer Machine Learning, Vrije Universiteit van Amsterdam (other).

    2024

    • Sachs, S. (2024). Optimization, games and generalization bounds. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities