For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Homburg, A. J., Kalle, C., Ruziboev, M., Verbitskiy, E., & Zeegers, B. (2022). Critical Intermittency in Random Interval Maps. Communications in Mathematical Physics, 394(1), 1-37. https://doi.org/10.1007/s00220-022-04396-9[details]
Homburg, A. J., & Rabodonandrianandraina, V. (2020). On-off intermittency and chaotic walks. Ergodic theory and dynamical systems, 40(7), 1805-1842. https://doi.org/10.1017/etds.2018.142[details]
Homburg, A. J., Jamilov, U. U., & Scheutzow, M. (2019). Asymptotics for a class of iterated random cubic operators. Nonlinearity, 32(10), 3646-3660. https://doi.org/10.1088/1361-6544/ab1f24[details]
Abbasi, N., Gharaei, M., & Homburg, A. J. (2018). Iterated function systems of logistic maps: Synchronization and intermittency. Nonlinearity, 31(8), 3880-3913. https://doi.org/10.1088/1361-6544/aac637[details]
Homburg, A. J. (2018). Synchronization in Minimal Iterated Function Systems on Compact Manifolds. Bulletin of the Brazilian Mathematical Society, 49(3), 615-635. https://doi.org/10.1007/s00574-018-0073-0[details]
Gharaei, M., & Homburg, A. J. (2017). Random interval diffeomorphisms. Discrete and Continuous Dynamical Systems - Series S, 10(2), 241-272. https://doi.org/10.3934/dcdss.2017012[details]
Homburg, A. J. (2017). Atomic disintegrations for partially hyperbolic diffeomorphisms. Proceedings of the American Mathematical Society, 145(7), 2981-2996. https://doi.org/10.1090/proc/13509[details]
Homburg, A. J., & Nassiri, M. (2014). Robust minimality of iterated function systems with two generators. Ergodic theory and dynamical systems, 34(6), 1914-1929. https://doi.org/10.1017/etds.2013.34[details]
Homburg, A. J., Young, T. R., & Gharaei, M. (2013). Bifurcations of random differential equations with bounded noise. In A. d'Onofrio (Ed.), Bounded noises in physics, biology, and engineering (pp. 133-149). (Modeling and Simulation in Science, Engineering and Technology; Vol. 60). Birkhäuser. https://doi.org/10.1007/978-1-4614-7385-5_9[details]
2012
Botts, R. T., Homburg, A. J., & Young, T. R. (2012). The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems (DCDS) - Series A, 32(8), 2997-3007. https://doi.org/10.3934/dcds.2012.32.2997[details]
Homburg, A. J., Jukes, A. C., Knobloch, J., & Lamb, J. S. W. (2011). Bifurcation from codimension one relative homoclinic cycles. Transactions of the Americal Mathematical Society, 363, 5663-5701. https://doi.org/10.1090/S0002-9947-2011-05193-7[details]
Colonius, F., Homburg, A. J., & Kliemann, W. (2010). Near invariance and local transience for random diffeomorphisms. Journal of Difference Equations and Applications, 16(2-3), 127-141. https://doi.org/10.1080/10236190802653646[details]
Homburg, A. J., & Sandstede, B. (2010). Homoclinic and heteroclinic bifurcations in vector fields. In H. Broer, F. Takens, & B. Hasselblatt (Eds.), Handbook of dynamical systems (Vol. 3, pp. 379-524). North-Holland. https://doi.org/10.1016/S1874-575X(10)00316-4[details]
Homburg, A. J., Jukes, A. C., Knobloch, J., & Lamb, J. S. W. (2008). Saddle-nodes and period-doublings of Smale horseshoes: A case study near resonant homoclinic bellows. Bulletin of the Belgian Mathematical Society - Simon Stevin, 15(5), 833-850. http://projecteuclid.org/euclid.bbms/1228486411[details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.