Homburg, A. J., Kalle, C., Ruziboev, M., Verbitskiy, E., & Zeegers, B. (2022). Critical Intermittency in Random Interval Maps. Communications in Mathematical Physics, 394(1), 1-37. https://doi.org/10.1007/s00220-022-04396-9[details]
Homburg, A. J., & Rabodonandrianandraina, V. (2020). On-off intermittency and chaotic walks. Ergodic theory and dynamical systems, 40(7), 1805-1842. https://doi.org/10.1017/etds.2018.142[details]
Homburg, A. J., Jamilov, U. U., & Scheutzow, M. (2019). Asymptotics for a class of iterated random cubic operators. Nonlinearity, 32(10), 3646-3660. https://doi.org/10.1088/1361-6544/ab1f24[details]
Abbasi, N., Gharaei, M., & Homburg, A. J. (2018). Iterated function systems of logistic maps: Synchronization and intermittency. Nonlinearity, 31(8), 3880-3913. https://doi.org/10.1088/1361-6544/aac637[details]
Homburg, A. J. (2018). Synchronization in Minimal Iterated Function Systems on Compact Manifolds. Bulletin of the Brazilian Mathematical Society, 49(3), 615-635. https://doi.org/10.1007/s00574-018-0073-0[details]
Gharaei, M., & Homburg, A. J. (2017). Random interval diffeomorphisms. Discrete and Continuous Dynamical Systems - Series S, 10(2), 241-272. https://doi.org/10.3934/dcdss.2017012[details]
Homburg, A. J. (2017). Atomic disintegrations for partially hyperbolic diffeomorphisms. Proceedings of the American Mathematical Society, 145(7), 2981-2996. https://doi.org/10.1090/proc/13509[details]
Homburg, A. J., & Nassiri, M. (2014). Robust minimality of iterated function systems with two generators. Ergodic theory and dynamical systems, 34(6), 1914-1929. https://doi.org/10.1017/etds.2013.34[details]
Homburg, A. J., Young, T. R., & Gharaei, M. (2013). Bifurcations of random differential equations with bounded noise. In A. d'Onofrio (Ed.), Bounded noises in physics, biology, and engineering (pp. 133-149). (Modeling and Simulation in Science, Engineering and Technology; Vol. 60). Birkhäuser. https://doi.org/10.1007/978-1-4614-7385-5_9[details]
2012
Botts, R. T., Homburg, A. J., & Young, T. R. (2012). The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems (DCDS) - Series A, 32(8), 2997-3007. https://doi.org/10.3934/dcds.2012.32.2997[details]
Homburg, A. J., Jukes, A. C., Knobloch, J., & Lamb, J. S. W. (2011). Bifurcation from codimension one relative homoclinic cycles. Transactions of the Americal Mathematical Society, 363, 5663-5701. https://doi.org/10.1090/S0002-9947-2011-05193-7[details]
Colonius, F., Homburg, A. J., & Kliemann, W. (2010). Near invariance and local transience for random diffeomorphisms. Journal of Difference Equations and Applications, 16(2-3), 127-141. https://doi.org/10.1080/10236190802653646[details]
Homburg, A. J., & Sandstede, B. (2010). Homoclinic and heteroclinic bifurcations in vector fields. In H. Broer, F. Takens, & B. Hasselblatt (Eds.), Handbook of dynamical systems (Vol. 3, pp. 379-524). North-Holland. https://doi.org/10.1016/S1874-575X(10)00316-4[details]
Homburg, A. J., Jukes, A. C., Knobloch, J., & Lamb, J. S. W. (2008). Saddle-nodes and period-doublings of Smale horseshoes: A case study near resonant homoclinic bellows. Bulletin of the Belgian Mathematical Society - Simon Stevin, 15(5), 833-850. http://projecteuclid.org/euclid.bbms/1228486411[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.