For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Feng, Y., Opdam, E., & Solleveld, M. (2022). On Formal Degrees of Unipotent Representations. Journal of the Institute of Mathematics of Jussieu, 21(6), 1947-1999. https://doi.org/10.1017/S1474748021000062[details]
Krötz, B., Kuit, J. J., Opdam, E. M., & Schlichtkrull, H. (2022). Ellipticity and discrete series. Journal fur die Reine und Angewandte Mathematik, 2022(782), 109-119. https://doi.org/10.1515/crelle-2021-0063[details]
Krötz, B., Kuit, J. J., Opdam, E. M., & Schlichtkrull, H. (2020). The Infinitesimal Characters of Discrete Series for Real Spherical Spaces. Geometric and Functional Analysis, 30(3), 804-857. https://doi.org/10.1007/s00039-020-00540-6[details]
Opdam, E. (2019). Affine Hecke algebras and the conjectures of Hiraga, Ichino and Ikeda on the Plancherel density. In A. Aizenbud, D. Gourevitch, D. Kazhdan, & E. M. Lapid (Eds.), Representations of reductive groups: Conference in honor of Joseph Bernstein Representation Theory & Algebraic Geometry, June 11-16, 2017, Weizmann Institute of Science, Rehovot, Israel and The Hebrew University of Jerusalem, Jerusalem, Israel (pp. 309-350). (Proceedings of Symposia in Pure Mathematics; Vol. 101). American Mathematical Society. https://doi.org/10.1090/pspum/101[details]
Ciubotaru, D., & Opdam, E. (2017). A uniform classification of discrete series representations of affine Hecke algebras. Algebra and Number Theory, 11(5), 1089-1134. https://doi.org/10.2140/ant.2017.11.1089[details]
Ciubotaru, D., & Opdam, E. (2017). On the Elliptic Nonabelian Fourier Transform for Unipotent Representations of p-Adic Groups. In J. Cogdell, J-L. Kim, & C-B. Zhu (Eds.), Representation Theory, Number Theory, and Invariant Theory : In Honor of Roger Howe on the Occasion of His 70th Birthday (pp. 87-113). (Progress in Mathematics; Vol. 323). Birkhäuser. https://doi.org/10.1007/978-3-319-59728-7_4[details]
Ciubotaru, D., & Opdam, E. (2015). Formal degrees of unipotent discrete series representations and the exotic Fourier transform. Proceedings of the London Mathematical Society, 110(3), 615-646. https://doi.org/10.1112/plms/pdu060[details]
2014
Ciubotaru, D., Opdam, E. M., & Trapa, P. E. (2014). Algebraic and analytic Dirac induction for graded affine Hecke algebras. Journal of the Institute of Mathematics of Jussieu, 13(3), 447-486. https://doi.org/10.1017/S147474801300008X[details]
Opdam, E., & Solleveld, M. (2013). Resolutions of tempered representations of reductive p-adic groups. Journal of Functional Analysis, 265(1), 108-134. https://doi.org/10.1016/j.jfa.2013.04.001[details]
Emsiz, E., Opdam, E. M., & Stokman, J. V. (2009). Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Mathematica-New Series, 14/3-4, 571-605. https://doi.org/10.1007/s00029-009-0516-y[details]
Delorme, P., & Opdam, E. M. (2008). The Schwartz algebra of an affine Hecke algebra. Journal für die reine und angewandte Mathematik, (625), 59-114. https://doi.org/10.1515/CRELLE.2008.090[details]
The UvA uses cookies to measure, optimise, and ensure the proper functioning of the website. Cookies are also placed in order to display third-party content and for marketing purposes. Click 'Accept' to agree to the placement of all cookies; if you only want to accept functional and analytical cookies, select ‘Decline’. You can change your preferences at any time by clicking on 'Cookie settings' at the bottom of each page. Also read the UvA Privacy statement.