Feng, Y., Opdam, E., & Solleveld, M. (2022). On Formal Degrees of Unipotent Representations. Journal of the Institute of Mathematics of Jussieu, 21(6), 1947-1999. https://doi.org/10.1017/S1474748021000062[details]
Krötz, B., Kuit, J. J., Opdam, E. M., & Schlichtkrull, H. (2022). Ellipticity and discrete series. Journal fur die Reine und Angewandte Mathematik, 2022(782), 109-119. https://doi.org/10.1515/crelle-2021-0063[details]
Krötz, B., Kuit, J. J., Opdam, E. M., & Schlichtkrull, H. (2020). The Infinitesimal Characters of Discrete Series for Real Spherical Spaces. Geometric and Functional Analysis, 30(3), 804-857. https://doi.org/10.1007/s00039-020-00540-6[details]
Opdam, E. (2019). Affine Hecke algebras and the conjectures of Hiraga, Ichino and Ikeda on the Plancherel density. In A. Aizenbud, D. Gourevitch, D. Kazhdan, & E. M. Lapid (Eds.), Representations of reductive groups: Conference in honor of Joseph Bernstein Representation Theory & Algebraic Geometry, June 11-16, 2017, Weizmann Institute of Science, Rehovot, Israel and The Hebrew University of Jerusalem, Jerusalem, Israel (pp. 309-350). (Proceedings of Symposia in Pure Mathematics; Vol. 101). American Mathematical Society. https://doi.org/10.1090/pspum/101[details]
Ciubotaru, D., & Opdam, E. (2017). A uniform classification of discrete series representations of affine Hecke algebras. Algebra and Number Theory, 11(5), 1089-1134. https://doi.org/10.2140/ant.2017.11.1089[details]
Ciubotaru, D., & Opdam, E. (2017). On the Elliptic Nonabelian Fourier Transform for Unipotent Representations of p-Adic Groups. In J. Cogdell, J-L. Kim, & C-B. Zhu (Eds.), Representation Theory, Number Theory, and Invariant Theory : In Honor of Roger Howe on the Occasion of His 70th Birthday (pp. 87-113). (Progress in Mathematics; Vol. 323). Birkhäuser. https://doi.org/10.1007/978-3-319-59728-7_4[details]
Ciubotaru, D., & Opdam, E. (2015). Formal degrees of unipotent discrete series representations and the exotic Fourier transform. Proceedings of the London Mathematical Society, 110(3), 615-646. https://doi.org/10.1112/plms/pdu060[details]
2014
Ciubotaru, D., Opdam, E. M., & Trapa, P. E. (2014). Algebraic and analytic Dirac induction for graded affine Hecke algebras. Journal of the Institute of Mathematics of Jussieu, 13(3), 447-486. https://doi.org/10.1017/S147474801300008X[details]
Opdam, E., & Solleveld, M. (2013). Resolutions of tempered representations of reductive p-adic groups. Journal of Functional Analysis, 265(1), 108-134. https://doi.org/10.1016/j.jfa.2013.04.001[details]
Emsiz, E., Opdam, E. M., & Stokman, J. V. (2009). Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Mathematica-New Series, 14/3-4, 571-605. https://doi.org/10.1007/s00029-009-0516-y[details]
Delorme, P., & Opdam, E. M. (2008). The Schwartz algebra of an affine Hecke algebra. Journal für die reine und angewandte Mathematik, (625), 59-114. https://doi.org/10.1515/CRELLE.2008.090[details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.