 Jan Homburg, A., Peters, H., & Rabodonandrianandraina, V. (2024). Critical intermittency in rational maps. Nonlinearity, 37(6), Article 065015. https://doi.org/10.1088/1361-6544/ad42f9 [details]
Jan Homburg, A., Peters, H., & Rabodonandrianandraina, V. (2024). Critical intermittency in rational maps. Nonlinearity, 37(6), Article 065015. https://doi.org/10.1088/1361-6544/ad42f9 [details] de Boer, D., Buys, P., Guerini, L., Peters, H., & Regts, G. (2024). Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial. Mathematical Proceedings of the Cambridge Philosophical Society, 176(2), 459-494. https://doi.org/10.1017/S030500412300052X [details]
de Boer, D., Buys, P., Guerini, L., Peters, H., & Regts, G. (2024). Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial. Mathematical Proceedings of the Cambridge Philosophical Society, 176(2), 459-494. https://doi.org/10.1017/S030500412300052X [details] Arosio, L., Benini, A. M., Fornæss, J. E., & Peters, H. (2023). Dynamics of transcendental Hénon maps-II. Mathematische Annalen, 385(3-4), 975-999. https://doi.org/10.1007/s00208-022-02358-z [details]
Arosio, L., Benini, A. M., Fornæss, J. E., & Peters, H. (2023). Dynamics of transcendental Hénon maps-II. Mathematische Annalen, 385(3-4), 975-999. https://doi.org/10.1007/s00208-022-02358-z [details] Bencs, F., Buys, P., Guerini, L., & Peters, H. (2022). Lee-Yang zeros of the antiferromagnetic Ising Model. Ergodic theory and dynamical systems, 42(7), 2172-2206. https://doi.org/10.1017/etds.2021.25 [details]
Bencs, F., Buys, P., Guerini, L., & Peters, H. (2022). Lee-Yang zeros of the antiferromagnetic Ising Model. Ergodic theory and dynamical systems, 42(7), 2172-2206. https://doi.org/10.1017/etds.2021.25 [details] Benini, A. M., Fornæss, J. E., & Peters, H. (2021). Entropy of transcendental entire functions. Ergodic theory and dynamical systems, 41(2), 338-348. https://doi.org/10.1017/etds.2019.65 [details]
Benini, A. M., Fornæss, J. E., & Peters, H. (2021). Entropy of transcendental entire functions. Ergodic theory and dynamical systems, 41(2), 338-348. https://doi.org/10.1017/etds.2019.65 [details] Hahn, D., & Peters, H. (2021). A polynomial automorphism with a wandering Fatou component. Advances in Mathematics, 382, Article 107650. https://doi.org/10.1016/j.aim.2021.107650 [details]
Hahn, D., & Peters, H. (2021). A polynomial automorphism with a wandering Fatou component. Advances in Mathematics, 382, Article 107650. https://doi.org/10.1016/j.aim.2021.107650 [details] Benini, A. M., Fornæss, J. E., & Peters, H. (2020). Infinite Entropy for Transcendental Entire Functions with an Omitted Value. Acta Mathematica Vietnamica, 45(1), 49-52. https://doi.org/10.1007/s40306-018-0300-1 [details]
Benini, A. M., Fornæss, J. E., & Peters, H. (2020). Infinite Entropy for Transcendental Entire Functions with an Omitted Value. Acta Mathematica Vietnamica, 45(1), 49-52. https://doi.org/10.1007/s40306-018-0300-1 [details] Guerini, L., & Peters, H. (2020). Random local complex dynamics. Ergodic theory and dynamical systems, 40(8), 2156-2182. https://doi.org/10.1017/etds.2018.138 [details]
Guerini, L., & Peters, H. (2020). Random local complex dynamics. Ergodic theory and dynamical systems, 40(8), 2156-2182. https://doi.org/10.1017/etds.2018.138 [details] Peters, H., & Regts, G. (2020). Location of zeros for the partition function of the Ising model on bounded degree graphs. Journal of the London Mathematical Society, 101(2), 765-785. https://doi.org/10.1112/jlms.12286 [details]
Peters, H., & Regts, G. (2020). Location of zeros for the partition function of the Ising model on bounded degree graphs. Journal of the London Mathematical Society, 101(2), 765-785. https://doi.org/10.1112/jlms.12286 [details] Wortel, M. T., Peters, H., Bonachela, J. A., & Stenseth, N. C. (2020). Continual evolution through coupled fast and slow feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4234-4242. https://doi.org/10.1073/pnas.1916345117 [details]
Wortel, M. T., Peters, H., Bonachela, J. A., & Stenseth, N. C. (2020). Continual evolution through coupled fast and slow feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4234-4242. https://doi.org/10.1073/pnas.1916345117 [details] Peters, H., & Smit, I. M. (2018). Fatou Components of Attracting Skew-Products. Journal of Geometric Analysis, 28(1), 84-110. https://doi.org/10.1007/s12220-017-9811-6 [details]
Peters, H., & Smit, I. M. (2018). Fatou Components of Attracting Skew-Products. Journal of Geometric Analysis, 28(1), 84-110. https://doi.org/10.1007/s12220-017-9811-6 [details] Astorg, M., Buff, X., Dujardin, R., Peters, H., & Raissy, J. (2016). A two-dimensional polynomial mapping with a wandering Fatou component. Annals of Mathematics, 184(1), 263-313. https://doi.org/10.4007/annals.2016.184.1.2 [details]
Astorg, M., Buff, X., Dujardin, R., Peters, H., & Raissy, J. (2016). A two-dimensional polynomial mapping with a wandering Fatou component. Annals of Mathematics, 184(1), 263-313. https://doi.org/10.4007/annals.2016.184.1.2 [details] Peters, H., & Vivas, L. R. (2016). Polynomial skew-products with wandering Fatou-disks. Mathematische Zeitschrift, 283(1-2), 349–366. https://doi.org/10.1007/s00209-015-1600-y [details]
Peters, H., & Vivas, L. R. (2016). Polynomial skew-products with wandering Fatou-disks. Mathematische Zeitschrift, 283(1-2), 349–366. https://doi.org/10.1007/s00209-015-1600-y [details] Jones, R., & Peters, H. (2011). Blocks of monodromy groups in complex dynamics. Geometriae dedicata, 150(1), 137-150. https://doi.org/10.1007/s10711-010-9499-2 [details]
Jones, R., & Peters, H. (2011). Blocks of monodromy groups in complex dynamics. Geometriae dedicata, 150(1), 137-150. https://doi.org/10.1007/s10711-010-9499-2 [details]