For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Carlet, G., Leur, J. V. D., Posthuma, H., & Shadrin, S. (2021). Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy. Letters in Mathematical Physics, 111(3), [63]. https://doi.org/10.1007/s11005-021-01391-4[details]
Piazza, P., & Posthuma, H. B. (2021). Higher genera for proper actions of Lie groups II: The case of manifolds with boundary. Annals of K-theory, 6(4), 713-782. https://doi.org/10.2140/akt.2021.6.713
Posthuma, H., Tang, X., & Wang, K. (2021). Resolutions of Proper Riemannian Lie Groupoids. International Mathematics Research Notices, 2021(2), 1249–1287. https://doi.org/10.1093/imrn/rny292[details]
Stehouwer, L., De Boer, J., Kruthoff, J., & Posthuma, H. (2021). Classification of crystalline topological insulators through K-theory. Advances in Theoretical and Mathematical Physics, 25(3), 723-775. https://doi.org/10.4310/ATMP.2021.V25.N3.A3[details]
Carlet, G., Posthuma, H., & Shadrin, S. (2018). Deformations of semisimple poisson pencils of hydrodynamic type are unobstructed. Journal of Differential Geometry, 108(1), 63-89. https://doi.org/10.4310/jdg/1513998030[details]
2017
Pflaum, M. J., Posthuma, H., & Tang, X. (2017). The Grauert–Grothendieck complex on differentiable spaces and a sheaf complex of Brylinski. Methods and applications of analysis, 24(2), 321–332. https://doi.org/10.4310/MAA.2017.v24.n2.a8[details]
Carlet, G., Posthuma, H., & Shadrin, S. (2016). The bi-Hamiltonian cohomology of a scalar Poisson pencil. Bulletin of the London Mathematical Society, 48(4), 617-627. https://doi.org/10.1112/blms/bdw017[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2015). The localized longitudinal index theorem for Lie groupoids and the van Est map. Advances in Mathematics, 270, 223-262. https://doi.org/10.1016/j.aim.2014.11.007[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2015). The transverse index theorem for proper cocompact actions of Lie groupoids. Journal of Differential Geometry, 99(3), 443-472. [details]
2014
Carlet, G., van de Leur, J., Posthuma, H., & Shadrin, S. (2014). Towards Lax Formulation of Integrable Hierarchies of Topological Type. Communications in Mathematical Physics, 326(3), 815-849. https://doi.org/10.1007/s00220-014-1898-z[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2014). Geometry of orbit spaces of proper Lie groupoids. Journal für die reine und angewandte Mathematik, 694, 49-84. https://doi.org/10.1515/crelle-2012-0092[details]
Buryak, A., Posthuma, H., & Shadrin, S. (2012). A polynomial bracket for the Dubrovin-Zhang hierarchies. Journal of Differential Geometry, 92(1), 153-185. [details]
Buryak, A., Posthuma, H., & Shadrin, S. (2012). On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. Journal of Geometry and Physics, 62(7), 1639-1651. https://doi.org/10.1016/j.geomphys.2012.03.006[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2012). Quantization of Whitney functions. Travaux Mathématiques, 20, 153-165. [details]
Kowalzig, N., & Posthuma, H. (2011). The cyclic theory of Hopf algebroids. Journal of Noncommutative Geometry, 5(3), 423-476. https://doi.org/10.4171/JNCG/82[details]
Pflaum, M. J., Posthuma, H. B., Tang, X., & Tseng, H-H. (2011). Orbifold cup products and ring structures on Hochschild cohomologies. Communications in Contemporary Mathematics (CCM), 13(1), 123-182. https://doi.org/10.1142/S0219199711004142[details]
Hertling, C., Hoevenaars, L., & Posthuma, H. (2010). Frobenius manifolds, projective special geometry and Hitchin systems. Journal für die reine und angewandte Mathematik, (649), 117-165. https://doi.org/10.1515/CRELLE.2010.091[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2010). Cyclic cocycles on deformation quantizations and higher index theorems. Advances in Mathematics, 223(6), 1958-2021. https://doi.org/10.1016/j.aim.2009.10.012[details]
2009
Pflaum, M. J., Posthuma, H., & Tang, X. (2009). On the algebraic index for Riemannian étale groupoids. Letters in Mathematical Physics, 90(1-3), 287-310. https://doi.org/10.1007/s11005-009-0339-y[details]
Pflaum, M. J., Posthuma, H. B., & Tang, X. (2007). An algebraic index theorem for orbifolds. Advances in Mathematics, 210(1), 83-121. https://doi.org/10.1016/j.aim.2006.05.018
2006
Neumaier, N., Pflaum, M. J., Posthuma, H. B., & Tang, X. (2006). Homology of formal deformations of proper étale Lie groupoids. Journal fur die Reine und Angewandte Mathematik, (593), 117-168. https://doi.org/10.1515/CRELLE.2006.031
2023
Kosmeijer, B. (2023). Equivariant theory of Lie groupoids from the perspective of non-commutative geometry. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.