Piazza, P., Posthuma, H., Song, Y., & Tang, X. (in press). Higher orbital integrals, rho numbers and index theory. Mathematische Annalen. https://doi.org/10.1007/s00208-024-03008-2
2023
Carlet, G., van de Leur, J., Posthuma, H., & Shadrin, S. (2023). Enumeration of hypermaps and Hirota equations for extended rationally constrained KP. Communications in Number Theory and Physics, 17(3), 643-708. https://doi.org/10.4310/CNTP.2023.v17.n3.a3[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2023). On the Hochschild homology of proper Lie groupoids. Journal of Noncommutative Geometry, 17(1), 101-162. https://doi.org/10.4171/JNCG/467[details]
Carlet, G., Leur, J. V. D., Posthuma, H., & Shadrin, S. (2021). Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy. Letters in Mathematical Physics, 111(3), Article 63. https://doi.org/10.1007/s11005-021-01391-4[details]
Piazza, P., & Posthuma, H. B. (2021). Higher genera for proper actions of Lie groups II: The case of manifolds with boundary. Annals of K-theory, 6(4), 713-782. https://doi.org/10.2140/akt.2021.6.713[details]
Stehouwer, L., De Boer, J., Kruthoff, J., & Posthuma, H. (2021). Classification of crystalline topological insulators through K-theory. Advances in Theoretical and Mathematical Physics, 25(3), 723-775. https://doi.org/10.4310/ATMP.2021.V25.N3.A3[details]
Carlet, G., Posthuma, H., & Shadrin, S. (2018). Deformations of semisimple poisson pencils of hydrodynamic type are unobstructed. Journal of Differential Geometry, 108(1), 63-89. https://doi.org/10.4310/jdg/1513998030[details]
2017
Pflaum, M. J., Posthuma, H., & Tang, X. (2017). The Grauert–Grothendieck complex on differentiable spaces and a sheaf complex of Brylinski. Methods and applications of analysis, 24(2), 321–332. https://doi.org/10.4310/MAA.2017.v24.n2.a8[details]
Carlet, G., Posthuma, H., & Shadrin, S. (2016). The bi-Hamiltonian cohomology of a scalar Poisson pencil. Bulletin of the London Mathematical Society, 48(4), 617-627. https://doi.org/10.1112/blms/bdw017[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2015). The localized longitudinal index theorem for Lie groupoids and the van Est map. Advances in Mathematics, 270, 223-262. Advance online publication. https://doi.org/10.1016/j.aim.2014.11.007[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2015). The transverse index theorem for proper cocompact actions of Lie groupoids. Journal of Differential Geometry, 99(3), 443-472. http://projecteuclid.org/euclid.jdg/1424880982[details]
2014
Carlet, G., van de Leur, J., Posthuma, H., & Shadrin, S. (2014). Towards Lax Formulation of Integrable Hierarchies of Topological Type. Communications in Mathematical Physics, 326(3), 815-849. https://doi.org/10.1007/s00220-014-1898-z[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2014). Geometry of orbit spaces of proper Lie groupoids. Journal für die reine und angewandte Mathematik, 694, 49-84. https://doi.org/10.1515/crelle-2012-0092[details]
Buryak, A., Posthuma, H., & Shadrin, S. (2012). On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. Journal of Geometry and Physics, 62(7), 1639-1651. https://doi.org/10.1016/j.geomphys.2012.03.006[details]
Kowalzig, N., & Posthuma, H. (2011). The cyclic theory of Hopf algebroids. Journal of Noncommutative Geometry, 5(3), 423-476. https://doi.org/10.4171/JNCG/82[details]
Pflaum, M. J., Posthuma, H. B., Tang, X., & Tseng, H-H. (2011). Orbifold cup products and ring structures on Hochschild cohomologies. Communications in Contemporary Mathematics (CCM), 13(1), 123-182. https://doi.org/10.1142/S0219199711004142[details]
Hertling, C., Hoevenaars, L., & Posthuma, H. (2010). Frobenius manifolds, projective special geometry and Hitchin systems. Journal für die reine und angewandte Mathematik, (649), 117-165. https://doi.org/10.1515/CRELLE.2010.091[details]
Pflaum, M. J., Posthuma, H., & Tang, X. (2010). Cyclic cocycles on deformation quantizations and higher index theorems. Advances in Mathematics, 223(6), 1958-2021. https://doi.org/10.1016/j.aim.2009.10.012[details]
2009
Pflaum, M. J., Posthuma, H., & Tang, X. (2009). On the algebraic index for Riemannian étale groupoids. Letters in Mathematical Physics, 90(1-3), 287-310. https://doi.org/10.1007/s11005-009-0339-y[details]
Pflaum, M. J., Posthuma, H. B., & Tang, X. (2007). An algebraic index theorem for orbifolds. Advances in Mathematics, 210(1), 83-121. https://doi.org/10.1016/j.aim.2006.05.018
2006
Neumaier, N., Pflaum, M. J., Posthuma, H. B., & Tang, X. (2006). Homology of formal deformations of proper étale Lie groupoids. Journal fur die Reine und Angewandte Mathematik, (593), 117-168. https://doi.org/10.1515/CRELLE.2006.031
2023
Kosmeijer, B. (2023). Equivariant theory of Lie groupoids from the perspective of non-commutative geometry. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.